4.2.Регулирование уровня.
Уровень является косвенным показателем гидродинамического равновесия в аппарате. Постоянство уровня свидетельствует о соблюдении материального баланса, когда приток жидкости равен стоку, и скорость изменения уровня равна нулю. Следует отметить, что «приток» и «сток» здесь являются обобщенными понятиями. В простейшем случае, когда в аппарате не происходят фазовые превращения (сборники, промежуточные емкости, жидкофазные реакторы), приток равен расходу жидкости, подаваемой в аппарат, а сток — расходу жидкости, отводимой из аппарата. В более сложных процессах, сопровождающихся изменением фазового состояния веществ, уровень является характеристикой не только гидравлических, но и тепловых и массообменных процессов, а приток и сток учитывают фазовые превращения веществ. Такие процессы протекают в испарителях, конденсаторах, выпарных установках, ректификационных колоннах и т. п.
В общем случае изменение уровня описывается уравнением вида
S dL/dt = Gвх — Gвых ± Go6, (4.1)
где S — площадь горизонтального (свободного) сечения аппарата; Gвх, Gвых—расходы жидкости на входе в аппарат и выходе из него; Gоб — количество жидкости, образующейся (или расходуемой) в аппарате в единицу времени.
В зависимости от требуемой точности поддержания уровня применяют один из следующих двух способов регулирования:
1 ) позиционное регулирование, при котором уровень в аппарате поддерживается в заданных, достаточно широких пределах Lн<L<Lв.
Такие системы регулирования устанавливают на сборниках жидкости или промежуточных емкостях (рис. 4.6). При достижении предельного значения уровня происходит автоматическое переключение потока на запасную емкость;
2) непрерывное регулирование, при котором обеспечивается стабилизация уровня на заданном значении, т. е. L = L°.
Особенно высокие требования предъявляются к точности регулирования уровня в теплообменных аппаратах, в которых уровень жидкости существенно влияет на тепловые процессы. Например, в паровых теплообменниках уровень конденсата определяет фактическую поверхность теплообмена. В таких АСР для регулирования уровня без статической погрешности применяют ПИ-регуляторы. П-регуляторы используют лишь в тех случаях, когда не требуется высокое качество регулирования и возмущения в системе не имеют постоянной составляющей, которая может привести к накоплению статической погрешности.
При отсутствии фазовых превращений в аппарате уровень в нем регулируют одним из трех способов:
и зменением расхода жидкости на входе в аппарат (регулирование «на притоке», рис. 4.7,а);
изменением расхода жидкости на выходе из аппарата (регулирование «на стоке», рис. 4.7,6);
регулированием соотношения расходов жидкости на входе в аппарат и выходе из него с коррекцией по уровню (каскадная АСР, рис. 4.7,в); отключение корректирующего контура может привести к накоплению ошибки при регулировании уровня; так как вследствие неизбежных погрешностей в настройке регулятора соотношения расходы жидкости на входе и выходе аппарата не будут точно равны друг другу и вследствие интегрирующих свойств объекта [см. уравнение (4.1)] уровень в аппарате будет непрерывно нарастать (или убывать).
В случае, когда гидродинамические процессы в аппарате сопровождаются фазовыми превращениями, можно регулировать уровень изменением подачи теплоносителя (или хладагента), как это показано на рис. 4.8. В таких аппаратах уровень взаимосвязан с другими параметрами (например, давлением), поэтому выбор способа регулирования уровня в каждом конкретном случае должен выполняться с учетом остальных контуров регулирования.
Особое место в системах регулирования уровня занимают АСР уровня в аппаратах с кипящим (псевдоcжиженным) слоем зернистого материала. Устойчивое поддержание уровня кипящего слоя возможно в достаточно узких пределах соотношения расхода газа и массы слоя. При значительных колебаниях расхода газа (или расхода зернистого материала) наступает режим уноса слоя или его оседания. Поэтому к точности регулирования уровня кипящего слоя предъявляют особенно высокие требования. В качестве регулирующих воздействий используют расход зернистого материала на входе или выходе аппарата (рис. 4.9,а) или расход газа на ожижение слоя (рис. 4.9,6).
- Предисловие
- 1. Основные понятия и определения.
- 6. Структуры асу тп.
- 2. Управление современным промышленным
- 2.2. Стадии разработки систем автоматизации
- 2.3. Анализ технологического процесса как объекта управления
- 2.4. Особенности математических моделей тоу
- 3. Автоматизация технологических процессов с применением локальных средств регулирования. Базовые автоматические системы управления
- 3.1. Основные типовые алгоритмы регулирования, реализуемые промышленными контроллерами
- 3.1.1. Аналоговые автоматические регуляторы
- 3.1.2. Стандартные алгоритмы цифровых контроллеров
- 3.1.3. Обобщенный линейный алгоритм регулирования
- 3.2. Методы настройки локальных аср
- 3.3. Итерационные методы автоматизированной настройки действующих промышленных систем управления
- 3.4. Расчет настроек позиционных систем регулирования
- 3.5. Схемные методы улучшения качества регулирования технологических объектов управления
- 3.5.1. Каскадные системы регулирования
- 3.5.2. Системы регулирования с дифференциатором
- 3.5.3. Системы регулирования с компенсацией возмущений
- 3.5.4. Взаимосвязанные системы регулирования
- 3.5.4.1. Системы несвязного регулирования
- 3.5.4.2. Системы связанного регулирования (автономные аср)
- 3.5.4.3. Оценка связности подсистем в статике
- 7. Обобщенный линейный алгоритм регулирования.
- 9. Итерационные методы автоматизированной настройки действующих промышленных систем управления.
- 4. Регулирование основных технологических параметров в химико-технологических процессах
- 4.1. Регулирование расхода
- 4.2.Регулирование уровня.
- 4.3. Регулирование давления.
- 4.4. Регулирование температуры.
- 4.5. Регулирование рН.
- 4.6. Регулирование параметров состава и качества.
- 5. Автоматизированные системы управления технологическими процессами
- 5.1. Функции и составные части асу тп
- 5.2. Структуры асу тп
- 5.2.1. Централизованные асу тп
- 5.2.2. Децентрализованные асу тп
- 5.2.2.1. Концепции построения современных децентрализованных асу тп
- 5.2.2.2. Основные функции scada.
- 5.2.3. Общие требования к системе паз
- 9. Общие требования к системе паз.
- 6. Автоматизация управления на базе программно-технических комплексов
- 6.1. Микропроцессорные программно-технические комплексы децентрализованных асу тп
- 6.2. Технология автоматизации, основанная на применении полевой шины
- 7. Информационный обмен данными в системах автоматизации Стандартный интерфейс взаимодействия программ в промышленных системах автоматизации – орс
- Стандартная сеть с hart-протоколом
- Стандартные сети Foundation Fieldbus
- Стандартные сети profibus
- Характеристики промышленных сетей, использующих стандарты:
- 3. Стандартные сети Foundation Fieldbus, основные характеристики.
- 5. Стандарты обмена данными: rs–232, rs–422, rs–485.
- 8. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями
- Список литературы Литература основная
- Литература дополнительная