2.2.14. Гидродинамика псевдоожиженных слоев
В химической технологии большое распространение получили процессы взаимодействия газов и жидкостей с твердыми зернистыми материалами, при проведении которых твердые частицы приобретают подвижность друг относительно друга за счет обмена энергией с движущимся потоком. Такое состояние твердых частиц называется «псевдоожиженным слоем» в связи с внешним сходством с поведением капельной жидкости. Псевдоожиженный слой принимает форму вмещающего сосуда (аппарата), его поверхность горизонтальна, тела, имеющие меньшую плотность, чем псевдоожиженный слой, всплывают в нем, а большую – тонут. Кроме этого, имеются и другие свойства псевдоожиженного слоя, характерные для жидкостей: текучесть, вязкость, поверхностное натяжение.
Широкое применение псевдоожижения в технике обусловлено рядом положительных факторов. Твердые частицы в псевдоожиженном состоянии вследствие текучести можно перемещать по трубам, что позволяет многие периодические процессы осуществлять непрерывно. Особенно выгодно применение псевдоожиженного слоя для процессов, скорость которых определяется термическим или диффузионным сопротивлением в газовой фазе. Эти сопротивления в условиях псевдоожижения уменьшаются в десятки, а иногда и сотни раз, и скорость процессов соответственно увеличивается.
Благодаря интенсивному перемешиванию твердых частиц в псевдоожиженном слое, практически выравнивается поле температур, устраняется возможность появления локальных перегревов и связанных с этим нарушений в протекании ряда технологических процессов.
Наряду с достоинствами псевдоожиженному слою свойственны и определенные недостатки. Так, вызванное интенсивным перемещением твердых частиц выравнивание температур и концентраций в слое приводит к уменьшению движущей силы процесса. Возможность проскока значительных количеств газа без достаточного контакта с твердыми частицами снижает выход целевого продукта. Отрицательными факторами следует считать также износ самих твердых частиц, эрозию аппаратуры, возникновение значительных зарядов статического электричества, необходимость установки мощных газоочистительных устройств после аппаратов с псевдоожиженным слоем.
Некоторые из перечисленных недостатков могут быть устранены рациональным конструированием аппарата.
Аппараты с псевдоожиженным слоем используются для перемещения и смешивания сыпучих материалов, для проведения процессов обжига, теплообмена, сушки, адсорбции, каталитических и других процессов.
Гидродинамическая сущность процесса псевдоожижения состоит в следующем. Если через слой твердых частиц, расположенный на поддерживающей перфорированной решетке аппарата, проходит поток псевдоожижающего агента (газа или жидкости), то состояние слоя оказывается различным в зависимости от скорости этого потока (рис. 2.19).
При плавном увеличении скорости потока от нуля до некоторого критического значения происходит обычный процесс фильтрования, при котором твердые частицы остаются неподвижными. На графике процесса псевдоожижения (рис. 2.20), называемом кривой псевдоожижения и выражающем зависимость перепада статического давления в слое зернистого и пылевидного материалов от скорости псевдоожижающего агента, восходящая линия АВ соответствует процессу фильтрации.
В случае малого размера частиц и невысоких скоростей фильтрации режим течения агента в слое ламинарный и отрезок АВ представляет собой прямую линию. Для крупных частиц при достаточно высоких скоростях псевдоожижающего агента перепад давления с увеличением скорости растет нелинейно (для переходного и турбулентного режимов).
Для процесса фильтрации гидравлическое сопротивление определяется по формуле (2.11)
и критерий Рейнольдса вычисляется по формуле
.
Переход от процесса фильтрации к состоянию псевдоожижения соответствует на кривой псевдоожижения скорости жидкости (газа) , называемойскоростью начала псевдоожижения. В начальный момент псевдоожижения масса зернистого материала, приходящаяся на единицу площади поперечного сечения аппарата, уравновешивается силой гидравлического сопротивления слоя:
,
где – масса материала в слое и площадь поперечного сечения аппарата соответственно.
С учетом Архимедовых сил, действующих на частицы слоя, это выражение можно представить в виде
,
г h0
При скорости начала псевдоожижения и выше сопротивление слоя сохраняет практически постоянное значение и зависимостьвыражается прямой линиейАВ, параллельной оси абсцисс. Это связано с тем, что с ростом скорости псевдоожижающего агента контакт между частицами сокращается и они получают большую возможность хаотического перемешивания по всем направлениям. При этом возрастает среднее расстояние между частицами, т.е. увеличиваются порозность слоя и его высота. Высоту расширившегося слоя можно определить из условия сохранения постоянства перепада давления в псевдоожиженном слое:
,
откуда
.
В зависимости от свойств псевдоожижающего агента и его скорости можно наблюдать несколько стадий процесса. При скоростях псевдоожижающего агента, незначительно превышающих скорость начала псевдоожижения, т.е. при имеет местооднородное (спокойное) псевдоожижение.
При псевдоожижении газом по мере роста скорости в слое образуются компактные массы газа (пузыри) и на поверхности слоя появляются всплески твердых частиц. При этом наблюдаются значительные пульсации статического и динамического напоров псевдоожижающего агента. Такой характер гидродинамики слоя называется неоднородным.
При достижении некоторого второго критического значения скорости твердые частицы начинают выноситься из слоя и их количество в аппарате уменьшается. Эта скорость называется скоростью уноса . Порозность такого слоя стремится к единице и сопротивление слоя падает.
В инженерных расчетах очень важно оценить пределы существования псевдоожиженного слоя, т.е. определить значения скоростей и.
Отношение рабочей скорости , значение которой должно находиться в пределах междуи, к скорости начала псевдоожижения называетсячислом псевдоожижения:
.
В случае монодисперсного слоя для расчета скорости начала псевдоожижения можно вопользоваться зависимостями
, .
Скорость начала уноса, при которой происходят разрушение слоя и массовый унос частиц, определяют аналогично расчету скорости свободного осаждения частиц по уравнению, пригодному для всех режимов движения частиц:
, .
- Гидравлика и теплотехника
- Оглавление
- 1. Общие положения изучаемой дисциплины 10
- 2. Гидродинамика и ГиДродинамические процессы 22
- 3. Тепловые процессы и аппараты 118
- 4. Массообменные процессы и аппараты 162
- 5. Мембранные процессы 283
- Условные обозначения
- Введение
- 1. Общие положения изучаемой дисциплины
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Гидродинамика и ГиДродинамические процессы
- 2.1. Физические свойства жидкостей и газов
- 2.2. Основные уравнения покоя и движения жидкостей
- 2.2.1. Дифференциальные уравнения равновесия Эйлера для покоящейся жидкости
- 2.2.2. Практическое приложение уравнений гидростатики
- 2.2.3. Основные характеристики движения жидкостей
- 2.2.4. Уравнение неразрывности (сплошности) потока
- 2.2.5. Режимы движения жидкостей
- 2.2.6. Турбулентный режим
- 2.2.7. Дифференциальные уравнения движения жидкости
- 2.2.8. Дифференциальные уравнения движения Навье-Стокса
- 2.2.9. Уравнение Бернулли
- 2.2.10. Гидродинамическое подобие
- 2.2.11. Гидравлические сопротивления в трубопроводах и каналах
- 2.2.12. Движение тел в жидкостях
- 2.2.13. Движение жидкостей через неподвижные пористые слои
- 2.2.14. Гидродинамика псевдоожиженных слоев
- 2.3. Перемещение жидкостей (насосы)
- 2.3.1. Классификация и области применения насосов
- 2.3.2. Параметры насосов
- 2.3.3. Насосная установка
- 2.3.4. Основное уравнение лопастных машин (уравнение Эйлера)
- 2.3.5. Характеристики центробежных насосов
- 2.4. Сжатие и перемещение газов (компрессоры)
- 2.4.1. Классификация компрессоров
- 2.4.2. Поршневые компрессоры
- 2.4.3. Теоретический и рабочий процесс в поршневом компрессоре
- 2.4.4. Производительность действительного поршневого компрессора
- 2.4.5. Роторные компрессоры
- 2.4.6. Принцип действия, классификация и устройство турбокомпрессоров
- 2.5. Процессы разделения неоднородных смесей
- 2.5.1. Классификация неоднородных систем и способов их разделения
- 2.5.2. Материальные балансы процессов разделения
- 2.6. Осаждение
- 2.7. Фильтрование
- 2.8. Перемешивание в жидких средах
- 3. Тепловые процессы и аппараты
- 3.1. Способы передачи теплоты
- 3.2. Тепловые балансы
- 3.3. Температурное поле и температурный градиент
- 3.4. Передача тепла теплопроводностью
- 3.5. Тепловое излучение
- 3.6. Конвективный теплообмен
- 3.6.1. Теплоотдача
- 3.6.2. Дифференциальное уравнение конвективного теплообмена
- 3.6.3. Подобие процессов теплообмена
- 3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 3.6.5. Теплоотдача при изменении агрегатного состояния
- 3.7. Сложный теплообмен
- 3.8. Процессы нагревания, охлаждения и конденсации
- 3.9. Теплообменные аппараты
- 3.9.1. Классификация и типы теплообменных аппаратов
- 3.9.2. Расчет теплообменных аппаратов
- 3.9.3. Выбор и проектирование поверхностных теплообменников
- 4. Массообменные процессы и аппараты
- 4.1. Основы массопередачи
- 4.1.1. Общие сведения о массообменных процессах
- 4.1.2. Основные расчетные зависимости массообменных процессов
- 4.1.3. Материальный баланс массообменных процессов
- 4.1.4. Движущая сила массообменных процессов
- 4.1.5. Модифицированные уравнения массопередачи
- 4.1.6. Основные законы массопередачи
- 4.1.7. Подобие процессов переноса массы
- 4.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 4.2. Абсорбция
- 4.2.1. Равновесие при абсорбции
- 4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 4.2.4. Конструкции колонных абсорбционных аппаратов
- 4.2.5. Десорбция
- 4.3. Перегонка жидкостей
- 4.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 4.3.4. Ректификация многокомпонентных смесей
- 4.3.5. Тепловой баланс процесса ректификации
- 4.3.6. Специальные виды перегонки
- 4.3.7. Устройство ректификационных аппаратов
- 4.4. Экстракция
- 4.4.1. Жидкостная экстракция
- 4.4.2. Равновесие при экстракции
- 4.4.3. Материальный баланс экстракции
- 4.4.4. Кинетические закономерности процесса экстракции
- 4.4.5. Принципиальные схемы процесса экстракции
- 4.4.6. Конструкции экстракторов
- 4.5. Адсорбция
- 4.5.1. Равновесие в процессах адсорбции
- 4.5.2. Промышленные адсорбенты
- 4.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 4.6. Сушка
- 4.6.1. Равновесие в процессах сушки
- 4.6.2. Конструкции сушилок и области их применения
- 4.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке:
- 4.7. Кристаллизация и растворение
- 4.7.1. Общие сведения
- 4.7.2. Равновесие при кристаллизации
- 4.7.3. Кинетика процесса кристаллизации
- 4.7.4. Факторы, влияющие на процесс кристаллизации
- 4.7.5. Материальный и тепловой балансы кристаллизации
- 4.7.6. Кристаллизаторы
- 5. Мембранные процессы
- 5.1 . Процессы мембранного разделения смесей. Сущность процесса мембранного разделения смесей
- 5.2. Кинетика процессов мембранного разделения смесей
- 5.3. Влияние различных факторов на мембранное разделение
- 5.4. Мембраны
- 5.4.1. Уплотняющиеся (полимерные) мембраны
- 5.4.2. Мембраны с жесткой структурой
- 5.4.3. Жидкие мембраны
- 5.5. Физико-химические основы мембранных процессов
- 5.6. Баромембранные процессы
- 5.7. Диффузионно-мембранные процессы
- 5.8. Электромембранные процессы
- 5.9. Термомембранные процессы
- 5.10. Расчет мембранных процессов и аппаратов
- 5.11. Мембранные аппараты
- Библиографический список
- Гидравлика и теплотехника