1.1. Классификация основных процессов и аппаратов
В зависимости от закономерностей, характеризующих протекание, процессы как химической, так и экологической технологий делят на пять основных групп.
Механические процессы, скорость которых связана с законами физики твёрдого тела. К ним относятся: измельчение, классификация, дозирование и смешение твёрдых сыпучих материалов. В настоящем учебном пособии эти процессы не рассматриваются. Следует отметить, что для осуществления безотходных и ресурсосберегающих технологических процессов, механические процессы имеют существенное значение для осуществления экологических технологий, например, при переработке отходов или вторичного сырья из пластических масс. Более подробные сведения о механических процессах следует искать в специальной литературе (например, в [20]).
Гидромеханические процессы, скорость протекания которых определяется законами гидромеханики. К ним относятся: сжатие и перемещение газов, перемещения жидкостей, твердых материалов, осаждение, фильтрование, перемешивание в жидкой фазе, псевдоожижение и т. п.
Тепловые процессы, скорость протекания которых определяется законами теплопередачи. К ним следует отнести процессы: нагревания, выпаривания, охлаждения (естественного и искусственного), конденсации и кипения.
Массообменные (диффузионные) процессы, интенсивность которых определяется скоростью перехода вещества из одной фазы в другую, т.е. законами массопередачи. К диффузионным процессам относятся: абсорбция, ректификация, экстракция, кристаллизация, адсорбция, сушка и др.
Химические процессы связаны с превращением веществ и изменением их химических свойств. Скорость этих процессов определяется закономерностями химической кинетики.
В научном и прикладном плане химические процессы совместно со всеми вышеперечисленными процессами в целом и определяют химико-технологи-ческие процессы, без которых невозможны безотходные технологии. Любой химический процесс сопровождается переносом импульса, теплоты, вещества; в ряде случаев именно явление переноса, а не собственно химическое превращение, определяет течение химического процесса и успех его в осуществлении.
Общие закономерности протекания химических процессов и принципы устройства реакторов рассматриваются в специальных дисциплинах.
В соответствии с перечисленным делением процессов аппараты классифицируют следующим образом: измельчающие и классифицирующие машины; гидромеханические, тепловые, массообменные аппараты; оборудование для осуществления химических превращений – реакторы.
По организационно-технической структуре процессы делятся на периодические и непрерывные.
В периодическом процессе отдельные стадии (операции) осуществляются в одном месте (аппарате, машине), но в разное время (рис. 1.1). В непрерывном процессе (рис. 1.2) отдельные стадии осуществляются одновременно, но в разных местах (аппаратах или машинах).
Непрерывные процессы имеют значительные преимущества: возможность специализации аппаратуры для каждой стадии, улучшение качества продукта, стабилизация процесса во времени, простота регулирования, возможность автоматизации и т.п.
При проведении процессов в любом из перечисленных аппаратов изменяются значения параметров перерабатываемых материалов. Параметрами, характеризующими процесс, являются давление, температура, концентрация, плотность, скорость потока, энтальпия и др.
Непрерывные процессы получили широкое и преимущественное распространение на всех крупных предприятиях химической и нефтехимической промышленности.
В зависимости от характера движения потоков и изменения параметров веществ, поступающих в аппарат, все аппараты могут быть разделены на три группы: аппараты идеального (полного) смешения, аппараты идеального (полного) вытеснения и аппараты промежуточного типа. Параметрами, определяющими состояние вещества в аппарате, называются величины, характерные для данного процесса, например: температура, давление, концентрация и т.п.
Наиболее удобно продемонстрировать особенности потока различной структуры на примере теплообменников непрерывного действия. На рис. 1.1 представлена схема теплообменника, работающего по принципу идеального вытеснения. Принимается, что в этом аппарате происходит «поршневое» течение потока без перемешивания. Температура одного из теплоносителей меняется по длине аппарата от начальной температурыдо конечной в результате того, что протекающие через аппарат последующие объёмы жидкости не смешиваются с предыдущими, полностью вытесняя их. Температура второго теплоносителя принята постоянной (конденсирующийся пар).
Рис. 1.1. Аппарат для проведения периодического процесса:
1 – сырье; 2 – готовый продукт;
3 – пар; 4 – конденсат; 5 – хлаждающая вода
В аппарате идеального смешения последующие и предыдущие объёмы жидкости идеально перемешаны, температура жидкости в аппарате постоянна и равна конечной (рис. 1.2).
Рис. 1.2. Аппарат для проведения непрерывного процесса:
1 – теплообменник-нагреватель; 2 – аппарат с мешалкой;
3 – теплообменник-холодильник; I – сырье; II – готовый продукт; III – пар;
IV – конденсат; V – охлаждающая вода
В реальных аппаратах не могут быть обеспечены ни условия идеального смешения, ни идеального вытеснения. На практике можно достигнуть только достаточно близкого приближения к этим схемам, поэтому реальные аппараты – это аппараты промежуточного типа (рис. 1.3).
а) б) в)
Рис. 1.3. Изменение температуры при нагревании жидкости в аппаратах различных типов: а – полного вытеснения; б – полного смешения; в – промежуточного типа
Движущая сила рассматриваемого процесса нагревания жидкости для любого элемента аппарата представляет разностьмежду температурами греющего пара и нагреваемой жидкости.
Разница в протекании процессов в каждом из типов аппаратов становится особенно ясной, если рассмотреть, как изменяется движущая сила процесса в каждом из типов аппаратов. Из сравнения графиков следует, что максимальная движущая сила имеет место в аппаратах полного вытеснения, минимальная – в аппаратах полного смешения.
Рис. 1.4. Изменение движущей силы процесса при секционировании
Следует отметить, что движущая сила процессов в непрерывно действующих аппаратах идеального смешения может быть значительно увеличена путём разделения рабочего объёма аппарата на ряд секций.
Если объём аппарата идеального смешения разделить на n аппаратов и в них провести процесс, то движущая сила увеличится (рис. 1.4).
При увеличении числа секций в аппаратах идеального смешения значение движущей силы приближается к её значению в аппаратах идеального вытеснения, и при большом числе секций (порядка 8–12) движущие силы в аппаратах того и другого типа становятся приблизительно одинаковыми.
- Гидравлика и теплотехника
- Оглавление
- 1. Общие положения изучаемой дисциплины 10
- 2. Гидродинамика и ГиДродинамические процессы 22
- 3. Тепловые процессы и аппараты 118
- 4. Массообменные процессы и аппараты 162
- 5. Мембранные процессы 283
- Условные обозначения
- Введение
- 1. Общие положения изучаемой дисциплины
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Гидродинамика и ГиДродинамические процессы
- 2.1. Физические свойства жидкостей и газов
- 2.2. Основные уравнения покоя и движения жидкостей
- 2.2.1. Дифференциальные уравнения равновесия Эйлера для покоящейся жидкости
- 2.2.2. Практическое приложение уравнений гидростатики
- 2.2.3. Основные характеристики движения жидкостей
- 2.2.4. Уравнение неразрывности (сплошности) потока
- 2.2.5. Режимы движения жидкостей
- 2.2.6. Турбулентный режим
- 2.2.7. Дифференциальные уравнения движения жидкости
- 2.2.8. Дифференциальные уравнения движения Навье-Стокса
- 2.2.9. Уравнение Бернулли
- 2.2.10. Гидродинамическое подобие
- 2.2.11. Гидравлические сопротивления в трубопроводах и каналах
- 2.2.12. Движение тел в жидкостях
- 2.2.13. Движение жидкостей через неподвижные пористые слои
- 2.2.14. Гидродинамика псевдоожиженных слоев
- 2.3. Перемещение жидкостей (насосы)
- 2.3.1. Классификация и области применения насосов
- 2.3.2. Параметры насосов
- 2.3.3. Насосная установка
- 2.3.4. Основное уравнение лопастных машин (уравнение Эйлера)
- 2.3.5. Характеристики центробежных насосов
- 2.4. Сжатие и перемещение газов (компрессоры)
- 2.4.1. Классификация компрессоров
- 2.4.2. Поршневые компрессоры
- 2.4.3. Теоретический и рабочий процесс в поршневом компрессоре
- 2.4.4. Производительность действительного поршневого компрессора
- 2.4.5. Роторные компрессоры
- 2.4.6. Принцип действия, классификация и устройство турбокомпрессоров
- 2.5. Процессы разделения неоднородных смесей
- 2.5.1. Классификация неоднородных систем и способов их разделения
- 2.5.2. Материальные балансы процессов разделения
- 2.6. Осаждение
- 2.7. Фильтрование
- 2.8. Перемешивание в жидких средах
- 3. Тепловые процессы и аппараты
- 3.1. Способы передачи теплоты
- 3.2. Тепловые балансы
- 3.3. Температурное поле и температурный градиент
- 3.4. Передача тепла теплопроводностью
- 3.5. Тепловое излучение
- 3.6. Конвективный теплообмен
- 3.6.1. Теплоотдача
- 3.6.2. Дифференциальное уравнение конвективного теплообмена
- 3.6.3. Подобие процессов теплообмена
- 3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 3.6.5. Теплоотдача при изменении агрегатного состояния
- 3.7. Сложный теплообмен
- 3.8. Процессы нагревания, охлаждения и конденсации
- 3.9. Теплообменные аппараты
- 3.9.1. Классификация и типы теплообменных аппаратов
- 3.9.2. Расчет теплообменных аппаратов
- 3.9.3. Выбор и проектирование поверхностных теплообменников
- 4. Массообменные процессы и аппараты
- 4.1. Основы массопередачи
- 4.1.1. Общие сведения о массообменных процессах
- 4.1.2. Основные расчетные зависимости массообменных процессов
- 4.1.3. Материальный баланс массообменных процессов
- 4.1.4. Движущая сила массообменных процессов
- 4.1.5. Модифицированные уравнения массопередачи
- 4.1.6. Основные законы массопередачи
- 4.1.7. Подобие процессов переноса массы
- 4.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 4.2. Абсорбция
- 4.2.1. Равновесие при абсорбции
- 4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 4.2.4. Конструкции колонных абсорбционных аппаратов
- 4.2.5. Десорбция
- 4.3. Перегонка жидкостей
- 4.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 4.3.4. Ректификация многокомпонентных смесей
- 4.3.5. Тепловой баланс процесса ректификации
- 4.3.6. Специальные виды перегонки
- 4.3.7. Устройство ректификационных аппаратов
- 4.4. Экстракция
- 4.4.1. Жидкостная экстракция
- 4.4.2. Равновесие при экстракции
- 4.4.3. Материальный баланс экстракции
- 4.4.4. Кинетические закономерности процесса экстракции
- 4.4.5. Принципиальные схемы процесса экстракции
- 4.4.6. Конструкции экстракторов
- 4.5. Адсорбция
- 4.5.1. Равновесие в процессах адсорбции
- 4.5.2. Промышленные адсорбенты
- 4.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 4.6. Сушка
- 4.6.1. Равновесие в процессах сушки
- 4.6.2. Конструкции сушилок и области их применения
- 4.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке:
- 4.7. Кристаллизация и растворение
- 4.7.1. Общие сведения
- 4.7.2. Равновесие при кристаллизации
- 4.7.3. Кинетика процесса кристаллизации
- 4.7.4. Факторы, влияющие на процесс кристаллизации
- 4.7.5. Материальный и тепловой балансы кристаллизации
- 4.7.6. Кристаллизаторы
- 5. Мембранные процессы
- 5.1 . Процессы мембранного разделения смесей. Сущность процесса мембранного разделения смесей
- 5.2. Кинетика процессов мембранного разделения смесей
- 5.3. Влияние различных факторов на мембранное разделение
- 5.4. Мембраны
- 5.4.1. Уплотняющиеся (полимерные) мембраны
- 5.4.2. Мембраны с жесткой структурой
- 5.4.3. Жидкие мембраны
- 5.5. Физико-химические основы мембранных процессов
- 5.6. Баромембранные процессы
- 5.7. Диффузионно-мембранные процессы
- 5.8. Электромембранные процессы
- 5.9. Термомембранные процессы
- 5.10. Расчет мембранных процессов и аппаратов
- 5.11. Мембранные аппараты
- Библиографический список
- Гидравлика и теплотехника