4.7.6. Кристаллизаторы
Применяемые в промышленности кристаллизаторы можно разделить на три группы: изогидрические,вакуумныеивыпарные. Выбор той или иной конструкции зависит от многих факторов: общей технологической схемы производства, физико-химических свойств раствора, производительности и т.п.
Изогидрические кристаллизаторыприменяются при проведении процесса кристаллизации солей, растворимость которых значительно уменьшается с понижением температуры. Раствор в таких кристаллизаторах охлаждается при постоянном количестве растворителя до температуры ниже температуры насыщения. В результате охлаждения раствор становится пересыщенным, что приводит к возникновению кристаллизации.
Изогидрические кристаллизаторы периодического действия применяют главным образом в малотоннажных производствах. Конструкция такого кристаллизатора приведена на рис. 4.67.
Рис. 4. 67. Изогидрический кристаллизатор периодического действия: 1 – корпус; 2 – мешалка; 3 – охлаждающая рубашка; 4 – разгрузочное устройство; 5 – подвод охлаждающей воды
Кристаллизатор представляет собой цилиндрический аппарат с охлаждающей рубашкой. Горячий насыщенный раствор заливается в аппарат 1 с непрерывно работающей мешалкой 2. После заполнения кристаллизатора в рубашку 3 подается охлаждающая вода. Образовавшаяся суспензия кристаллов сливается через разгрузочное устройство и направляется на фильтр или центрифугу для отделения кристаллов от маточного раствора.
Изогидрический барабанный погружной кристаллизатор (рис. 4.68) имеет корпус 1 с корытообразным днищем, в котором помещен барабан 2 с двойными стенками, между которыми протекает охлаждающая вода. Барабан, полностью погруженный в раствор, вращается на пустотелых цапфах, через которые подается и отводится охлаждающая вода. Горячий раствор непрерывно вводится в аппарат через штуцер 3, а маточный раствор с кристаллами отводится через штуцер 4. Зоны ввода и вывода раствора разделены перегородкой 5. В нижней части аппарата расположена лопастная мешалка 6, при работе которой предотвращается выпадение кристаллов на дно аппарата.
III II I
Рис. 4.68. Изогидрический барабанный погружной кристаллизатор непрерывного действия:
1 – корпус; 2 – барабан; 3 – штуцер для ввода раствора; 4 – штуцер для вывода суспензии
кристаллов; 5 – перегородка; 6 – лопастная мешалка; I – раствор; II – cуспензия;
III – охлаждающая вода
Изогидрический кристаллизатор с псевдоожиженным слоем кристаллов изображен на рис. 4.69. В кристаллизаторах этого типа возможно регулирование размеров получаемых кристаллов. Кристаллизатор состоит из корпуса 1, циркуляционного насоса 2, теплообменника 3 и отстойника для мелких кристаллов 4. Горячий раствор поступает через штуцер 5 во всасывающую циркуляционную трубу 6 и смешивается с циркулирующим по замкнутому контуру маточным раствором. Протекая через холодильник 3, раствор охлаждается и становится пересыщенным. Пересыщенный раствор по трубе 7 поступает в нижнюю часть корпуса кристаллизатора и поднимается вверх, поддерживая растущие кристаллы во взвешенном состоянии. По мере движения раствора через псевдоожиженный слой кристаллов его пересыщение снижается. Готовый кристаллический продукт выводится из нижней части аппарата через штуцер 8.
III
Рис. 4.69. Изогидрический кристаллизатор с псевдоожиженным слоем кристаллов:
1 – корпус; 2 – насос; 3 – теплообменник; 4 – отстойник; 5 – штуцер для ввода раствора;
6 – циркуляционная труба; 7 – центральная труба; 8 – штуцер для вывода суспензии
кристаллов; I – раствор; II – cуспензия; III – маточный раствор
Вакуумные кристаллизаторыпредставляют собой аппараты, в которых раствор охлаждается вследствие адиабатического испарения части растворителя. На испарение расходуется тепло от раствора, который при этом охлаждается до температуры, соответствующей его температуре кипения при данном остаточном давлении.
Выпарные кристаллизаторы применяют для кристаллизации солей, растворимость которых мало меняется с изменением температуры. При этом процесс осуществляется путем удаления части растворителя при выпаривании раствора. Конструкции выпарных кристаллизаторов аналогичны конструкциям выпарных аппаратов. Вакуум-выпарной кристаллизатор с псевдоожиженным слоем кристаллов приведен на рис. 4.70. Тепло, необходимое для испарения растворителя, подводится к раствору через греющую камеру 12.
VI 6 IV II V
Рис. 4.70. Вакуум-выпарной кристаллизатор с псевдоожиженным слоем кристаллов:
1 – корпус; 2, 5, 9 – циркуляционные трубы; 3 – сепаратор; 4 – штуцер для вывода пара;
6 – отстойник; 7 – насос; 8 – штуцер для ввода раствора; 10 – сосуд для сбора маточного
раствора; 11 – штуцер для вывода суспензии кристаллов; 12 – греющая камера;
I – раствор; II – маточный раствор; III – cуспензия; IV – соковый пар; V – пар; VI – конденсат
- Гидравлика и теплотехника
- Оглавление
- 1. Общие положения изучаемой дисциплины 10
- 2. Гидродинамика и ГиДродинамические процессы 22
- 3. Тепловые процессы и аппараты 118
- 4. Массообменные процессы и аппараты 162
- 5. Мембранные процессы 283
- Условные обозначения
- Введение
- 1. Общие положения изучаемой дисциплины
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Гидродинамика и ГиДродинамические процессы
- 2.1. Физические свойства жидкостей и газов
- 2.2. Основные уравнения покоя и движения жидкостей
- 2.2.1. Дифференциальные уравнения равновесия Эйлера для покоящейся жидкости
- 2.2.2. Практическое приложение уравнений гидростатики
- 2.2.3. Основные характеристики движения жидкостей
- 2.2.4. Уравнение неразрывности (сплошности) потока
- 2.2.5. Режимы движения жидкостей
- 2.2.6. Турбулентный режим
- 2.2.7. Дифференциальные уравнения движения жидкости
- 2.2.8. Дифференциальные уравнения движения Навье-Стокса
- 2.2.9. Уравнение Бернулли
- 2.2.10. Гидродинамическое подобие
- 2.2.11. Гидравлические сопротивления в трубопроводах и каналах
- 2.2.12. Движение тел в жидкостях
- 2.2.13. Движение жидкостей через неподвижные пористые слои
- 2.2.14. Гидродинамика псевдоожиженных слоев
- 2.3. Перемещение жидкостей (насосы)
- 2.3.1. Классификация и области применения насосов
- 2.3.2. Параметры насосов
- 2.3.3. Насосная установка
- 2.3.4. Основное уравнение лопастных машин (уравнение Эйлера)
- 2.3.5. Характеристики центробежных насосов
- 2.4. Сжатие и перемещение газов (компрессоры)
- 2.4.1. Классификация компрессоров
- 2.4.2. Поршневые компрессоры
- 2.4.3. Теоретический и рабочий процесс в поршневом компрессоре
- 2.4.4. Производительность действительного поршневого компрессора
- 2.4.5. Роторные компрессоры
- 2.4.6. Принцип действия, классификация и устройство турбокомпрессоров
- 2.5. Процессы разделения неоднородных смесей
- 2.5.1. Классификация неоднородных систем и способов их разделения
- 2.5.2. Материальные балансы процессов разделения
- 2.6. Осаждение
- 2.7. Фильтрование
- 2.8. Перемешивание в жидких средах
- 3. Тепловые процессы и аппараты
- 3.1. Способы передачи теплоты
- 3.2. Тепловые балансы
- 3.3. Температурное поле и температурный градиент
- 3.4. Передача тепла теплопроводностью
- 3.5. Тепловое излучение
- 3.6. Конвективный теплообмен
- 3.6.1. Теплоотдача
- 3.6.2. Дифференциальное уравнение конвективного теплообмена
- 3.6.3. Подобие процессов теплообмена
- 3.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 3.6.5. Теплоотдача при изменении агрегатного состояния
- 3.7. Сложный теплообмен
- 3.8. Процессы нагревания, охлаждения и конденсации
- 3.9. Теплообменные аппараты
- 3.9.1. Классификация и типы теплообменных аппаратов
- 3.9.2. Расчет теплообменных аппаратов
- 3.9.3. Выбор и проектирование поверхностных теплообменников
- 4. Массообменные процессы и аппараты
- 4.1. Основы массопередачи
- 4.1.1. Общие сведения о массообменных процессах
- 4.1.2. Основные расчетные зависимости массообменных процессов
- 4.1.3. Материальный баланс массообменных процессов
- 4.1.4. Движущая сила массообменных процессов
- 4.1.5. Модифицированные уравнения массопередачи
- 4.1.6. Основные законы массопередачи
- 4.1.7. Подобие процессов переноса массы
- 4.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 4.2. Абсорбция
- 4.2.1. Равновесие при абсорбции
- 4.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 4.2.4. Конструкции колонных абсорбционных аппаратов
- 4.2.5. Десорбция
- 4.3. Перегонка жидкостей
- 4.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 4.3.4. Ректификация многокомпонентных смесей
- 4.3.5. Тепловой баланс процесса ректификации
- 4.3.6. Специальные виды перегонки
- 4.3.7. Устройство ректификационных аппаратов
- 4.4. Экстракция
- 4.4.1. Жидкостная экстракция
- 4.4.2. Равновесие при экстракции
- 4.4.3. Материальный баланс экстракции
- 4.4.4. Кинетические закономерности процесса экстракции
- 4.4.5. Принципиальные схемы процесса экстракции
- 4.4.6. Конструкции экстракторов
- 4.5. Адсорбция
- 4.5.1. Равновесие в процессах адсорбции
- 4.5.2. Промышленные адсорбенты
- 4.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 4.6. Сушка
- 4.6.1. Равновесие в процессах сушки
- 4.6.2. Конструкции сушилок и области их применения
- 4.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке:
- 4.7. Кристаллизация и растворение
- 4.7.1. Общие сведения
- 4.7.2. Равновесие при кристаллизации
- 4.7.3. Кинетика процесса кристаллизации
- 4.7.4. Факторы, влияющие на процесс кристаллизации
- 4.7.5. Материальный и тепловой балансы кристаллизации
- 4.7.6. Кристаллизаторы
- 5. Мембранные процессы
- 5.1 . Процессы мембранного разделения смесей. Сущность процесса мембранного разделения смесей
- 5.2. Кинетика процессов мембранного разделения смесей
- 5.3. Влияние различных факторов на мембранное разделение
- 5.4. Мембраны
- 5.4.1. Уплотняющиеся (полимерные) мембраны
- 5.4.2. Мембраны с жесткой структурой
- 5.4.3. Жидкие мембраны
- 5.5. Физико-химические основы мембранных процессов
- 5.6. Баромембранные процессы
- 5.7. Диффузионно-мембранные процессы
- 5.8. Электромембранные процессы
- 5.9. Термомембранные процессы
- 5.10. Расчет мембранных процессов и аппаратов
- 5.11. Мембранные аппараты
- Библиографический список
- Гидравлика и теплотехника