13.1. Шлаки и их свойства
Наряду с активными минеральными добавками природного происхождения в качестве компонента цементов широкое применение получили побочные продукты смежных производств (доменные и электротермофосфорные шлаки, белитовый шлам и т. д.) или отходы при сжигании углей и других твердых горючих ископаемых (золы и шлаки, пыль, уловленная электрофильтрами мощных ГРЭС и ТЭЦ, и др.). Использование их позволяет, с одной стороны, резко снизить затраты тепловой и других видов энергии на производство цементов, а с другой — успешно решать вопросы охраны окружающей природы, экологической защиты земель, воды и атмосферного воздуха, резко снизить расходы по оборудованию отвалов и отстойников для хранения этих материалов.
Доменный шлак получают в результате обжига железной руды совместно с флюсами в восстановительной среде с использованием кокса в качестве топлива и восстановителя оксидов железа до металлического Fe и получения чугуна. В качестве флюса при обжиге добавляют карбонатные породы, состоящие из доломитизированных известняков, активно вступающих при плавлении руды в восстановительной среде в химическое взаимодействие с оксидами SiO2, A12O3и др., содержащимися в руде в качестве примесей, а также минеральным остатком при сгорании кокса (золы), образуя в расплаве силикаты и алюминаты кальция и магния.
Резко отличаясь по плотности, расплавы чугуна и шлака образуют в нижней части домны два слоя не смешивающихся между собой жидкостей. Жидкий шлак алюмосиликатного расплава сливают через летку в ковши, футерованные изнутри огнеупорным кирпичом, в которых доставляют его на грануляцию или в отвал.
В настоящее время для быстрого охлаждения шлака применяют мокрый и полусухой способы грануляции. При мокром способе грануляции расплавленный шлак сливают из летки доменной печи в шлаковозные ковши, в которых доставляют к месту грануляции. Ковш медленно наклоняется в сторону гранулятора и из него через край постепенно небольшой струей выливается шлак в специальные желоба, по которым он тонким слоем сливается в специальный железобетонный бассейн, наполненный водой. В результате соприкосновения шлака с водой он вспучивается и дробится на отдельные гранулы округлой формы, сильно пористые из-за оставшихся в его массе пузырьков газов и паров воды. Бассейн разделен на несколько отсеков, чтобы при сливе шлака из ковшей в один или несколько бассейнов можно было выгружать «закаленный» шлак грейферными кранами из соседних бассейнов, перегружая его в склад или в полувагоны, в которых его транспортируют потребителю.
Достоинства мокрой грануляции шлака: простота и высокая скорость охлаждения; однако для грануляции расходуется много воды, а после грануляции шлак имеет высокую влажность—15—35 % и на сушку 1 т шлака надо затратить до 70 кг условного топлива. При перевозке влажного шлака железнодорожным или другим видом транспорта приходится транспортировать воду (до 30 % сухой массы шлака). При перевозке в зимнее время шлак смерзается в вагонах, что значительно повышает время простоев вагонов под разгрузкой и для его размораживания и выгрузки затрачивают много тепловой энергии; для ускорения выгрузки шлака применяют бурорыхлительные установки.
При полусухой грануляции шлака его сливают на желоб грануляционной установки, в конце которого через дно вдувают сжатый воздух и небольшое количество воды, которая резко охлаждает шлак, и он в полужидком состоянии попадает на вращающийся с большой скоростью барабан, лопастями которого разбивается струя шлака. В результате частых ударов масса шлака дробится на мелкие гранулы, которые получают ускорение движения и отлетают на значительное расстояние, охлаждаясь за время полета воздухом. Влажность шлака после полусухой грануляции составляет 5-10 %.
В некоторых случаях при перевозке шлака к грануляционной установке в шлак вводят дополнительное количество предварительно декарбонизированной извести с целью повышения коэффициента качества шлака. Можно также вводить и другие добавки, улучшающие свойства шлака. Указанное мероприятие значительно усложняет технологическую схему грануляционной установки и затрудняет грануляцию шлака в связи с увеличением его вязкости и снижением температуры. Обогащение шлака известью можно производить в печах, в которые постепенно сливается жидкий шлак и подается добавка. В этом случае значительно улучшается смешение компонентов. Получаемый при этом обогащенный шлак имеет химический состав, приближающийся к составу клинкера с низким коэффициентом насыщения, и обладает высокой гидратационной активностью. Такой шлак применяют не только при производстве шлакопортландцемента, но и в качестве самостоятельного вяжущего.
Аналогично гранулируют шлак силикатного расплава, получаемый при производстве фосфора методом возгонки в электропечах, – электротермофосфорный шлак.
Доменные гранулированные шлакипо химическому составу в основном (на 90 % и более) состоят из четырех оксидов (S1O2, А12Оз, СаО и MgO) и содержат в незначительном количестве оксиды ТiO2, MnO, FeO и сульфиды CaS, MnS, FeS. Оксиды AI2O3и СаО повышают гидравлическую активность шлаков, a SiO2уменьшает ее; до 10 % MgO можно считать практически равноценным по активности оксиду кальция. Оксид магния в шлаках находится в химически связанном состоянии и не кристаллизуется в виде отдельной фазы, в связи с чем он не вызывает неравномерности изменения объема цемента.
Содержание оксидов титана и закиси марганца в шлаке ограничивается; при нормальном режиме работы доменной печи содержание FeO в шлаках мало и его влияние на качество шлака незначительно. Присутствие в шлаке небольшого количества сернистого кальция (до 7 %) несколько повышает его активность; при длительном вылеживании шлака на складе в присутствии паров воды и углекислого газа это соединение разлагается на СаСО3и H2S; часть CaS при хранении на воздухе может окисляться до CaSO4.
Основной показатель гидравлических свойств доменного гранулированного шлака — коэффициент качества К, определяемый в % в зависимости от содержания MgO в шлаке по формулам:
а) при содержании оксида магния до 10 %
.
б) при содержании оксида магния больше 10 %
.
В зависимости от химического состава и коэффициента качества доменные гранулированные шлаки подразделяют на три сорта.
Химический состав электротермофосфорных гранулированных шлаков: диоксид кремния SiO2— не менее 38 %; сумма оксидов кальция СаО и магния MgO — не менее 43 %; пятиоксид фосфора P2O5— не больше 2,5 %.
В зависимости от скорости охлаждения доменные и электротермофосфорные шлаки приобретают резко отличающиеся свойства, которые зависят от степени их закристаллизованности, гидравлической активности и т. д.
При медленном охлаждении шлаков, содержащих повышенное количество СаО (больше 45—46 %),. они могут рассыпаться в тонкий порошок из-за полиморфного перехода при 675 °С из - в-форму C2S, который сопровождается увеличением объема этого минерала на 10 % и появлением больших напряжений в системе; застывающий шлак растрескивается и рассыпается. Это явление называют силикатным распадом шлака. В ряде случаев может наблюдаться известковый распад, возникающий при гашении включений свободной извести, образовавшейся в шлаке в повышенном количестве в виде самостоятельной фазы, а также железистый распад, наблюдающийся при повышенном содержании сульфида железа FeS, который при взаимодействии с атмосферной влагой в процессе хранения шлака образует Fe(OH)2+H2S. В результате этой реакции происходит увеличение объема системы на 38 % и частичный или полный распад шлака; аналогично может происходить марганцевый распад.
В результате медленного охлаждения и практически полной кристаллизации основного доменного шлака происходит значительное снижение его активности в связи с образованием кристаллических фаз, практически не обладающих гидравлическими свойствами, а образующийся в небольшом количестве -C2S медленно набирает прочность, из-за чего медленно охлажденные доменные шлаки практически не используются в качестве добавки при производстве ШПЦ.
При быстром охлаждении огненно-жидких шлаков в процессе их грануляции они приобретают метастабильную (неустойчивую) стекловидную структуру. Такая система обладает повышенным запасом внутренней химической энергии. Быстрое охлаждение способствует предотвращению перехода - в-форму C2S, в результате в стекловидной фазе содержится повышенное количество гидратационно активной C2S в-форме. Присутствующий в основном доменном шлаке сульфид кальция при взаимодействии с водой гидролизуется, выделяя гидроксид кальция CaS+2H2O = H2S+Ca(OH)2, который благоприятствует проявлению основными доменными шлаками способности взаимодействовать с водой и медленно твердеть в воде в результате гидратации кристаллической и стекловидной фаз в присутствии Са(ОН)2. Проявляя слабовыраженные гидравлические свойства, основные доменные шлаки в качестве самостоятельного вяжущего применяться не могут. Кислые шлаки, имея лишь скрытые вяжущие свойства, в этих условиях гидратационной активности не проявляют.
С целью придания основным и кислым гранулированным шлакам гидравлических свойств к ним в качестве возбудителя твердения добавляют щелочи (щелочная активизация) или сульфаты (сульфатная активизация) некоторых металлов, действующие на стекловидную составляющую как активаторы гидратации и твердения. При совместном введения щелочей и сульфатов говорят о комбинированной активизации шлаков.
Шлаки алюмосиликатного состава с повышенным содержанием А12О3гидратируются и твердеют значительно быстрее шлаков, содержащих большое количество кремнезема.
В зависимости от химического состава шлака, температуры, от которой начинается его грануляция, и скорости охлаждения гранулированный шлак содержит (наряду со стекловидной) кристаллическую фазу, а медленно охлажденный шлак успевает практически полностью закристаллизоваться. Если в процессе сушки гранулированный шлак нагреть до 600—700 °С, то может произойти его расстекловывание, интенсивно протекающее при дальнейшем медленном охлаждении в сушильном барабане или другом агрегате, что приводит к резкому снижению его гидравлической активности и качества. Это свойство необходимо учитывать при сушке гранулированного шлака.
По химическому составу топливные шлаки и золыв зависимости от месторождения углей отличаются весьма значительно и могут содержать 30—65 % SiO2, 5—20 % СаО, 12—15 % А12О3и 5—20 % Fe2O3.
В зависимости от способа сжигания углей (в слое или пылевидном состоянии), скорости охлаждения, химического состава зол и шлаков их гидравлическая активность сильно различается, основными составляющими, шлаков и зол являются обожженное глинистое вещество, кварц, стекловидная фаза, магнезит в виде оплавленных шариков, а также частично несгоревшее органическое вещество, содержащееся в крупных пористых зернах, а также частицы угля.
- Кафедра «Производство строительных изделий и конструкций»
- 1. Введение
- 1.1. Общие сведения о вяжущих веществах, их значение для народного хозяйства
- 1.2. Краткие сведения о развитии производства вяжущих веществ
- 1.3. Классификация и номенклатура минеральных вяжущих материалов
- 2. Гипсовые и ангидритовые вяжущие
- 2.1. Сырье для производства гипсовых вяжущих
- 2.2. Дегидратация двуводного гипса и модификации водного и безводного СаSо4
- 2.3. Технология производства гипсовых вяжущих
- 2.4. Твердение гипсовых вяжущих
- 2.5. Свойства гипсовых вяжущих и их применение
- 2.6. Ангидритовые вяжущие вещества
- 3. Воздушная строительная известь
- 3.1. Разновидности строительной извести, ее состав
- 3.2. Сырьевые материалы для производства строительной воздушной извести
- 3.3. Технология производства строительной извести
- 3.4. Виды твердения воздушной строительной извести
- 3.5. Свойства строительной извести и ее применение
- 4. Магнезиальные вяжущие вещества
- 4.1. Сырье для производства магнезиальных вяжущих веществ
- 4.2. Производство каустического магнезита и каустического доломита
- 4.3. Твердение магнезиальных вяжущих веществ
- 4.4. Свойства магнезиальных вяжущих веществ
- 4.5. Применение магнезиальных вяжущих веществ
- 5. Гидравлическая известь
- 6. Портландцемент
- 6.1. Общая характеристика и вещественный состав портландцемента
- 6.2. Химический и минеральный состав клинкера
- 6.3. Сырьевые материалы для производства портландцемента
- 7. Технология производства портландцемента
- 7.1. Способы производства портландцемента
- 7.2. Добыча и транспортирование сырьевых материалов
- 7.3. Складирование сырья, добавок, топлива
- 7.4. Измельчение материалов и приготовление сырьевой смеси
- 7.5. Обжиг сырьевой смеси и получение клинкера
- 7.6. Помол клинкера и добавок и получение портландцемента
- 8. Физико-химические основы схватывания и твердения портландцемента. Структура цементного теста и камня
- 8.1. Взаимодействие цемента с водой и химический состав новообразований
- 8.2. Теория твердения портландцемента
- 8.3. Формирование структуры и свойств цементного теста
- 8.3. Структура цементного камня
- 10. Стойкость портландцемента к химической коррозии
- 11. Разновидностипортландцемента
- 11.1 Быстротвердеющий и высокопрочный портландцементы
- 11.2. Портландцемент с поверхностно-активными добавками
- 11.3. Сульфатостойкий портландцемент
- 11.4. Портландцемент с умеренной экзотермией
- 11.5. Портландцемент для дорожного строительства
- 11.5. Портландцемент для производства асбестоцементных изделий
- 11.6. Белый и цветные портландцементы
- 12. Многокомпонентные цементы с природными минеральными добавками
- 12.1. Активные минеральные добавки
- 12.2. Пуццолановый портландцемент
- 12.3. Известково-пуццолановое вяжущее вещество
- 12.4. Цементы с микронаполнителями
- 12.5. Композиционные гипсовые вяжущие
- 13. Шлаковые цементы
- 13.1. Шлаки и их свойства
- 13.2. Шлакопортландцемент
- 13.3. Извсстково-шлаковое вяжущее
- 13.4. Известково-зольное вяжущее
- 13.5. Сульфатно-шлаковые вяжущие
- 14. Цементы из специальных клинкеров
- 14.1. Глиноземистый цемент
- 14.2. Расширяющиеся и напрягающие цементы
- 14.3. Сверхбыстротвердеющие цементы
- 15. Органические вяжущие вещества
- 15.1. Полимерные вяжущие
- 15.2. Битумные и дегтевые вяжущие
- 15.3. Неорганические вяжущие с добавками полимерных веществ