3.2.3 Описание работы установки гидроочистки нефтяных дистиллятов (л-24-7) (рисунок 13)
Гидроочистка является наиболее глубокой формой гидрогенизационных процессов. Гидроочистке подвергают как прямогонные дистилляты (бензин, керосин, дизельное топливо, вакуумный газойль), так и дистилляты вторичного происхождения (легкая фракция смолы пиролиза, бензины, легкие газойли коксования, каталитического крекинга, термического крекинга, висбрекинга). Гидроочистку используют для удаления из сырья сернистых, азотистых, кислородсодержащих соединений, а также для гидрирования непредельных углеводородов.
Сырье (дизельное топливо) предварительно нагревается в теплообменниках (на схеме не показано), смешивается с циркулирующим ВСГ, и подается в печь 3, где нагревается до температуры 380-400 0С (в зависимости от вида сырья). После печи смесь поступает в реактор 4. На некоторых установках часто предусмотрена 2 или 3 ступенчатая очистка сырья. Для увеличения температуры смеси или снятия экзотермического эффекта реакции между реакторами обычно вводят холодный ВСГ. После последнего реактора гидрогенизат поступает в газосепаратор высокого давления 6, где происходит процесс однократного испарения обычно при давлении, равном или несколько ниже давления в реакторе. Температура в газосепараторе 80-85 0С. Подбирая температуру в сепараторе регулируют концентрацию водорода (Н2) в циркулирующем ВСГ. Газовая фаза поступает в абсорбер 8, где происходит улавливание сероводорода (H2S) водными растворами моно-, диэтаноламина. После отчистки часть циркулирующего ВСГ выводится с установки в виде отдува, а основная часть восполняется свежим ВСГ.
После газосепаратора высокого давления 6 гидрогенизат поступает в газосепоратор низкого давления 7, где за счет понижения давления появляется газовая фаза. Газовая фаза поступает в абсорбер 9, где очищается от сероводорода, и выводится сверху в линию сухого газа.
Гидрогенизат из газосепаратора низкого давления 7 поступает во фракционирующий абсорбер 12, где из дизельного топлива удаляются растворенные газы, которые подаются на очистку от сероводорода в абсорбер 10, и бензиновая фракция. Бензиновая фракция используется как орошение 12, а ее балансовое количество откачивается с установки. Снизу 12 отводится гидроочищенное дизельное топливо, часть которого используется как горячая струя низа колонны 12, нагреваемая в печи 13. В качестве абсорбента колонны 12 используется бензин.
В десорбере 11 параллельно происходит регенерация потоков абсорбента (моноэтаноламина), насыщенных сероводородом. Сверху 11 отводится сероводород, а снизу регенерированный абсорбент подается в абсорберы 8, 9, 10.
Примерный материальный баланс процессов гидроочистки
Сырье | Бензин | Керосин | Дизельное топливо | Вакуумный газойль |
Взято, % |
|
|
|
|
Сырьё | 100 | 100 | 100 | 100 |
Водород 100%-ный на реакцию | 0,15 | 0,25 | 0,40 | 0,65 |
Итого: | 100,15 | 100,25 | 100,40 | 100,65 |
Получено, % |
|
|
|
|
Гидроочищенное топливо | 99 | 97,9 | 96,9 | 86,75 |
Дизельное топливо | - | - | - | 9,2 |
Отгон (бензин) | - | 1,10 | 1,3 | 1,3 |
Углеводородный газ | 0,65 | 0,65 | 0,60 | 1,5 |
Сероводород | - | 0,20 | 1,2 | 1,5 |
Потери | 0,5 | 0,4 | 0,4 | 0,4 |
Итого: | 100,15 | 100,25 | 100,4 | 100,65 |
Рисунок 12 – Принципиальная технологическая схема каталитического риформинга
Рисунок 13 – Принципиальная технологическая схема гидроочистки дизельного топлива (Л-24-7)
- 1 Физическая технология топлив
- 1.1 Подготовка нефти к переработке
- 1.1.1 Описание работы электрообессоливающей установки (элоу) (рисунок 1)
- 1.2 Первичная переработка нефти
- 1.2.1 Описание работы установки авт-1 (рисунок 2)
- 1.2.2 Описание работы установки элоу-ат-6 (рисунок 3)
- 1.2.3 Описание работы установки элоу-атв-6 (рисунок 4)
- 1.2.4 Описание работы установки элоу-авт-4 по переработке газового конденсата (рисунок 5)
- 3 Химическая технология топлив и углеродных материалов
- 3.1 Термические процессы
- 3.1.1 Описание работы установки термического крекинга нефтяных остатков (рисунок 6)
- 3.1.2 Описание работы установки замедленного коксования (рисунок 7)
- 3.1.3 Описание работы установки термоконтактного коксования (рисунок 8)
- 3.1.4 Описание работы установки термического пиролиза легкого углеводородного сырья (рисунок 9)
- 3.2 Каталитические процессы
- 3.2.1 Каталитический крекинг а) Описание работы установки г-43-102 каталитического крекинга вакуумного газойля (рисунок 10)
- Б) Описание работы установки г- 43-107 по переработке вакуумного газойля (рисунок 11)
- 3.2.2 Описание работы установки каталитического риформинга (рисунок 12)
- 3.2.3 Описание работы установки гидроочистки нефтяных дистиллятов (л-24-7) (рисунок 13)
- 3.2.4 Описание работы установки гидрокрекинга вакуумного газойля (рисунок 14)
- I вариант гидрокрекинга - бензиновый, II вариант – дизельный
- 3.3 Получение индивидуальных продуктов
- 3.3.1 Описание технологической схемы сернокислотного алкилирования изобутана олефинами (рисунок 15)
- 3.3.2 Полимеризация (олигомеризация) пропан-пропиленовой фракции (рисунок 16)
- 3.3.3 Каталитическая изомеризация легких парафинов нормального строения (рисунок 17)
- 3.3.4 Производство метилтретбутилового эфира (мтбэ) (рисунок 18)
- 3.4 Переработка твердых топлив
- 3.4.1 Полукоксование твердых топлив (рисунок 19)
- 3.4.2 Газификация каменного угля (рисунок 20)
- 3.5 Производство нефтяных масел
- 3.5.1 Процесс деасфальтизации гудрона в сжиженном пропане (рисунок 21)
- 3.5.2 Селективная очистка масляного сырья фенолом (рисунок 22)
- 3.5.3 Селективная очистка масел фурфуролом (рисунок 23)
- 3.5.4 Депарафинизация масляного сырья в кетон-ароматическом растворителе (рисунок 24)
- 3.5.5 Депарафинизация масляного сырья комплексообразованием с карбамидом (рисунок 25)
- 3.5.6 Адсорбционная очистка масел (контактная очистка) (рисунок 26)
- Список используемых источников
- Содержание
- Редактор л.А. Маркешина
- 450062, Республика Башкортостан, г. Уфа, ул. Космонавтов, 1