3.4. Расчет настроек позиционных систем регулирования
Промышленные регуляторы, как отмечалось выше, выполняют свою основную задачу управления с помощью 2-х типов принципиально различных алгоритмов: линейных (ПИ, ПИД и т. д.) и нелинейных.
Нелинейные регуляторы представляют устройства, в состав которых входят элементы, имеющие существенно - нелинейную характеристику. Если решать задачу управления с использованием максимальной мощности регулирующего воздействия (задача максимального быстродействия), то наиболее простое конструктивное исполнение возникает при применении релейных устройств (элементы с кусочно-постоянной статической характеристикой). Например, 2-х позиционного реле.
Р ассмотрим вариант позиционного регулятора, имеющего симметрическую статическую характеристику 2-х позиционного реле. Выходной сигнал релейного устройства равен μm, при определенном порогового значении Δ входного сигнала. Такое реле характеризуется зоной неоднозначности 2Δ. (Особенность: петля гистерезиса – направление изменения сигнала против часовой стрелки). Управляющее воздействие принимает два конечно-постоянных значения.
П ринципиальная особенность функционирования систем управления с таким алгоритмом – возникновение особого режима работы системы: режима автоколебаний. Параметры автоколебаний (амплитуда и период) нелинейной системы зависят от свойств объекта и параметров нелинейной характеристики (Δ, μmax, μmin). В отличие от линейной системы, автоколебания определяют стационарный режим работы системы, а параметры автоколебаний не зависят от возмущающих воздействий.
Параметры автоколебаний могут быть определены методом гармонического баланса (метод Гольдфарба), исследованием на фазовой плоскости, либо методом припасовывания (кусочно-линейной аппроксимации). Такие подходы используют аналитические или графические построения и позволяют получить параметры автоколебаний, являющиеся несколько завышенными по сравнению с реальными. Для приближенной оценки автоколебаний широко используется метод Клюева А. С.
Рассмотрим процессы 2-х позиционного регулирования и особенности настройки регуляторов при отсутствии запаздывания в системе.
Пусть объект управления представляет собой интегрирующее звено.
..
Подадим на вход объекта управления ступенчатый сигнал амплитудой m, тогда рис. 3.40., где .
Рис. 3.40
Рис. 3.41
В системе устанавливаются колебания с размахом рис. 3.41.
Отрезки времени t1 и t2, характеризующие состояние выходного сигнала реле одинаковы, при этом: , , , , амплитуда автоколебаний , а частота переключений реле (Тк – период колебаний).
Если при настройке уменьшать Δ↓ , то Тк↓ и частота переключений nk↑.
Рассмотрим вариант работы схемы с несимметричной статической характеристикой нелинейного устройства (например, μmax = 2μmin). В этом случае
, , , .
Процессы движения системы представлены на рис.3.42
Если объект обладает свойством самовыравнивания , то разгонная характеристика имеет вид рис. 3.43 .
При симметричной статической характеристике 2-х позиционного реле устанавливаются симметричные автоколебания постоянной амплитуды и частоты. При этом параметры автоколебаний определяют следующим образом.
Размах колебаний , , так как
, то , .
Если , то частота переключений реле растет.
Рассмотрим поведение системы 2-х позиционного регулирования при наличии запаздывания. Запаздывание значительным образом влияет на параметры устанавливающихся колебаний системы.
Если передаточная функция объекта регулирования ,
то , а .
В результате устанавливаются симметричные колебания с периодом
и размахом .
Если Δ=0, то и .
Если характеристика несимметричная, то возникает смещение средней линии установившихся колебаний. Такой эффект в автоколебаниях аналогичен появлению статической ошибки. Величина смещения определяется следующим образом .
Аналогичные результаты получают, рассматривая объект с самовыравниванием.
- Предисловие
- 1. Основные понятия и определения.
- 6. Структуры асу тп.
- 2. Управление современным промышленным
- 2.2. Стадии разработки систем автоматизации
- 2.3. Анализ технологического процесса как объекта управления
- 2.4. Особенности математических моделей тоу
- 3. Автоматизация технологических процессов с применением локальных средств регулирования. Базовые автоматические системы управления
- 3.1. Основные типовые алгоритмы регулирования, реализуемые промышленными контроллерами
- 3.1.1. Аналоговые автоматические регуляторы
- 3.1.2. Стандартные алгоритмы цифровых контроллеров
- 3.1.3. Обобщенный линейный алгоритм регулирования
- 3.2. Методы настройки локальных аср
- 3.3. Итерационные методы автоматизированной настройки действующих промышленных систем управления
- 3.4. Расчет настроек позиционных систем регулирования
- 3.5. Схемные методы улучшения качества регулирования технологических объектов управления
- 3.5.1. Каскадные системы регулирования
- 3.5.2. Системы регулирования с дифференциатором
- 3.5.3. Системы регулирования с компенсацией возмущений
- 3.5.4. Взаимосвязанные системы регулирования
- 3.5.4.1. Системы несвязного регулирования
- 3.5.4.2. Системы связанного регулирования (автономные аср)
- 3.5.4.3. Оценка связности подсистем в статике
- 7. Обобщенный линейный алгоритм регулирования.
- 9. Итерационные методы автоматизированной настройки действующих промышленных систем управления.
- 4. Регулирование основных технологических параметров в химико-технологических процессах
- 4.1. Регулирование расхода
- 4.2.Регулирование уровня.
- 4.3. Регулирование давления.
- 4.4. Регулирование температуры.
- 4.5. Регулирование рН.
- 4.6. Регулирование параметров состава и качества.
- 5. Автоматизированные системы управления технологическими процессами
- 5.1. Функции и составные части асу тп
- 5.2. Структуры асу тп
- 5.2.1. Централизованные асу тп
- 5.2.2. Децентрализованные асу тп
- 5.2.2.1. Концепции построения современных децентрализованных асу тп
- 5.2.2.2. Основные функции scada.
- 5.2.3. Общие требования к системе паз
- 9. Общие требования к системе паз.
- 6. Автоматизация управления на базе программно-технических комплексов
- 6.1. Микропроцессорные программно-технические комплексы децентрализованных асу тп
- 6.2. Технология автоматизации, основанная на применении полевой шины
- 7. Информационный обмен данными в системах автоматизации Стандартный интерфейс взаимодействия программ в промышленных системах автоматизации – орс
- Стандартная сеть с hart-протоколом
- Стандартные сети Foundation Fieldbus
- Стандартные сети profibus
- Характеристики промышленных сетей, использующих стандарты:
- 3. Стандартные сети Foundation Fieldbus, основные характеристики.
- 5. Стандарты обмена данными: rs–232, rs–422, rs–485.
- 8. Интегрированные системы автоматизации и управления технологическими процессами, производствами и предприятиями
- Список литературы Литература основная
- Литература дополнительная