2. Физические основы работы электромеханических и магнитных элементов
Работа электромеханических и магнитных элементов, измерительных схем, применяемых в автоматике, основана на электрических и магнитных явлениях. Все эти элементы включаются в электрическую цепь, поэтому для описания их работы прежде всего используются закон Ома и законы Кирхгофа.
Закон Ома. Ток в проводнике I равен отношению напряжения U на участке проводника к электрическому сопротивлению R этого участка:
Первый закон Кирхгофа. В узле электрической цепи алгебраическая сумма токов равна нулю:
Второй закон Кирхгофа. В контуре электрической цепи алгебраическая сумма электродвижущих сил Е равна алгебраической сумме падений напряжения на сопротивлениях, входящих в этот контур:
Элементы и измерительные схемы в автоматике могут быть использованы в цепях постоянного и переменного тока. Законы Ома и Кирхгофа справедливы для электрических цепей переменного тока. Однако при этом используется символический метод с записью величин, входящих в уравнения, в комплексной форме. Полное сопротивление участка цепи в комплексной форме
где R — активное сопротивление; XL — индуктивное сопротивление; ХC — емкостное сопротивление.
Индуктивное сопротивление пропорционально индуктивности L и частоте переменного тока f: . Емкостное сопротивление обратно пропорционально емкости С и частоте переменного тока f:
Многие элементы автоматики основаны на изменении активного, индуктивного или емкостного сопротивлений. Так, для автоматического измерения температуры используется эффект увеличения активного сопротивления металлического проводника с ростом температуры и уменьшения активного сопротивления полупроводниковых материалов. В индуктивных датчиках, магнитных усилителях и некоторых других элементах используется зависимость индуктивности от насыщения магнитопровода или от взаимного перемещения элементов магнитопровода, в емкостных датчиках — зависимость емкости конденсатора от расстояния между его пластинами или площади пластин.
В ряде элементов автоматики используются электромеханические явления, связанные с взаимными преобразованиями электрической и механической энергии. В основе этих явлений лежат следующие физические законы.
Закон электромагнитной индукции. В замкнутом контуре при изменении сцепленного с ним магнитного потока Ф индуцируется ЭДС е, равная скорости изменения потокосцепления, взятой с обратным знаком:
Для катушки с числом витков w ЭДС е будет в w раз больше.
Закон Ампера. На проводник длиной l с током I, помещенный в магнитное поле с индукцией В, действует электромагнитная сила . Если прямолинейный проводник образует с направлением магнитного поля угол α, то в эту формулу вводится сомножитель.
При перемещении такого проводника длиной l со скоростью v в поле с индукцией В значение ЭДС может быть определено на основании закона электромагнитной индукции: . Если проводник движется под углом а к направлению магнитного поля, то в формулу вводится сомножитель:
Магнитная индукция В создается под действием напряженности магнитного поля Н. Эти величины связаны между собой зависимостью , где— абсолютная магнитная проницаемость, характеризующая магнитные свойства среды. Для магнитных материалов величинаочень велика, что позволяет получить большие значения индукцииВ при сравнительно малых напряженностях Н.
В свою очередь, величина Н определяется током, возбуждающим магнитное поле. Свойство тока возбуждать магнитное поле именуется магнитодвижущей силой (МДС). Зависимость напряженности H от тока I определяется законом полного тока.
Применительно к сердечнику из ферромагнитного материала с катушкой закон полного тока может быть записан в таком виде: , гдеw — число витков катушки; l — длина сердечника. Произведение называют магнитодвижущей или намагничивающей силой, а иногда числом ампер-витков.
При расчетах магнитных цепей используется аналогия между записью уравнений для тока в электрической цепи и для магнитного потока в магнитной цепи. Ток в электрической цепи можно определить как отношение ЭДС к электрическому сопротивлению, магнитный поток Ф в магнитной цепи — как отношение МДС к магнитному сопротивлению, называемое законом Ома для магнитной цепи. Соответственно можно говорить и о законах Кирхгофа для магнитных цепей. При этом вместо тока I подставляют магнитный поток Ф, вместо ЭДС Е — МДС , вместо электрического сопротивленияR — магнитное сопротивление, пропорциональное длине сердечника l и обратно пропорциональное абсолютной магнитной проницаемости и сечению сердечникаs. Связь между магнитным потоком Ф и магнитной индукцией В определяется соотношением Ф= B s.
Приведенные физические законы являются основными. Наряду с ними в отдельных элементах автоматики используются и другие физические закономерности и явления. В магнитных усилителях это явление одновременного намагничивания сердечника постоянным и переменным магнитными полями. В термоэлектрических, датчиках — эффект образования термоЭДС в цепи, состоящей из разных металлов (или полупроводников), при разной температуре мест соединения. В фотоэлектрических датчиках — эффект зависимости фото ЭДС между двумя контактирующими полупроводниками от интенсивности освещения, а также вылет электронов из освещенных тел, называемый внешним фотоэффектом. В магнитоупругих датчиках используется зависимость магнитных свойств ферромагнитов от механических напряжений, а в пьезоэлектрических датчиках — эффект появления ЭДС на гранях некоторых кристаллов при их сжатии.
Yandex.RTB R-A-252273-3- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы