5. Методика расчета мостовой схемы с тензодатчиками
Расчет мостовой схемы с тензодатчиками выполняется на основе следующих исходных данных: максимальное усилие F; чувствительность Sд; сопротивление датчика Sд; сопротивление измерительного прибора, или входное сопротивление усилителя, Rпр; допустимый ток элементов схемы l; размеры испытуемой детали и модуль упругости Е ее материала.
Эскиз крепления тензодатчика на консольной балке шириной b и толщиной h показан на рис. 7.
Расчет выполняется в такой последовательности:
1. Прогиб балки под действием силы F, приложенной на расстоянии L от места закрепления
(15)
Рис. 7. Крепление тензодатчика на консольной балке
где J — осевой момент инерции;
2. Относительное удлинение балки
(16)
3. Относительное изменение сопротивления датчика
(17)
4. Общая чувствительность измерения
(18)
где — используемая шкала прибора. Желательно использовать всю шкалу прибора, что позволит полностью реализовать точность измерительного прибора.
5. Необходимая чувствительность мостовой схемы: для схемы с двумя датчиками
(19 а)
для схемы с четырьмя датчиками
(19 б)
где Sпр — чувствительность измерительного прибора.
6. Затем по методике, находим функцию коэффициентов т, п, q, которые выражают соотношение сопротивлений плеч моста и измерительного прибора:
(20)
7. Определяем коэффициенты q и т: ; т = 1 (для двух датчиков).
8. Необходимое значение коэффициента п находим по номограмме, построенной для полученных значений q и т. Полученное значение чувствительности сопоставляется с формулой (20), и решается вопрос об использовании всей шкалы прибора.
Значение коэффициента п не должно превышать определенного предела, при котором ток не превышает допустимого значения при напряжении питания мостовой схемы U.
9. При измерении динамических деформаций частота питания должна быть в 5—10 раз выше частоты измеряемой деформации. При измерении деформаций частотой более 1 кГц мост обычно питают постоянным током.
10. Если невозможно обеспечить требуемую точность измерения, то применяют методы тарировки (градуировки) измерительного прибора по образцовому прибору.
ЭЛЕКТРОМАГНИТНЫЕ ДАТЧИКИ
Yandex.RTB R-A-252273-3- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы