6. Компенсационные измерительные схемы
Компенсационные схемы используют для измерения неэлектрических величин, которые преобразуются датчиками в ЭДС или напряжение. Сигнал датчика сравнивается с компенсирующим напряжением, вырабатываемым потенциометром. Подбор компенсирующего напряжения выполняется вручную или автоматически.
Приборы с автоматической компенсацией называют также автоматическими потенциометрами.
Рассмотрим простейшую компенсационную схему (рис. 13) с ручным уравновешиванием. Измеряемая ЭДС Ех или напряжение Uх уравновешиваются равным и противоположным по знаку напряжением UК, снимаемым с переменного проволочного резистора RК, представляющего собой часть резистора R. Этот резистор имеет два неподвижных вывода и один подвижный, выполненный в виде щетки, скользящей по проволоке. Все сопротивление резистора R включено в цепь источника питания с ЭДС Е. Переменное сопротивление RK пропорционально перемещению х движка (щетки): RK = (R/L) x, где L — общая длина проволочной намотки между неподвижными выводами. Соответственно и компенсирующее напряжение UK будет пропорционально перемещению движка х UK= (IR/L)x, где I — ток, проходящий через резистор R под действием ЭДС Е.
Движок необходимо перемещать до тех пор, пока компенсирующее напряжение UК не сравняется с измеряемым напряжением Uх: UK = Ux. Для определения положения точной компенсации используется чувствительный прибор (гальванометр или микроамперметр).
Рис. 13 Компенсационная измерительная схема с ручным уравновешиванием
Ток через прибор
(30)
где - сопротивление датчика;- сопротивление прибора.
Если компенсация произошла, то ток через прибор равен нулю: = 0. Значит, прибор в данном случае нужен не для измерения тока, а для определения его нулевого значения. Поэтому такой прибор называют нуль-индикатором (НИ). О значении измеряемого напряжения можно судить по перемещению движка, т.е. движок можно соединить со стрелкой, а вдоль резистораR расположить шкалу, проградуировав ее в единицах напряжения или сразу в единицах той неэлектрической величины, которая преобразуется датчиком в ЭДС Ех или в напряжение Ux.
Отметим также, что при компенсационном методе измерения Ех = Ux. Действительно, , но в момент компенсации= 0.
Точность измерения при компенсационном методе зависит от стабильности поддержания тока I в цепи питания резистора R. Ведь именно от силы этого тока зависит значение компенсирующего напряжения UK. Если ЭДС источника питания Е уменьшилась (из-за разряда аккумулятора или батарейки), то уменьшится и ток I. Для компенсации придется на большее расстояние х переместить движок резистора R, и стрелка укажет на иное, ошибочное значение измеряемой величины. Для поддержания стабильного тока питания I можно использовать регулировочный резистор и миллиамперметр или применить источник стабилизированного напряжения, как в автоматическом потенциометре (рис. 14).
Чувствительность компенсационной схемы можно определить как отношение приращения тока через прибор к вызывающему его изменению измеряемого напряжения:
(31)
Рис. 14. Схема автоматического потенциометра
Если достигнуто состояние компенсации, то измеряемое напряжение Ux уравновешено компенсирующим напряжением UK (Ux= UK) и ток через прибор равен нулю. Пусть измеряемое напряжение изменилось на ΔUx, а компенсирующее напряжение не изменилось (движок потенциометра резистора R неподвижен).
В этом случае разность между измеряемым и компенсирующим напряжениями равна ΔUx. Под действием этого напряжения через прибор пройдет ток
(32)
где — внутреннее сопротивление электрической цепи питания, замеренное на зажимаха—б при отключенном датчике; — сопротивление прибора (нуль-индикатора);— сопротивление датчика. Сопротивлениеможно представить как параллельное соединение части сопротивления компенсирующего резисторас сопротивлением, состоящим из оставшейся части компенсирующего резистора(R - RK) и регулировочного резистора :
(33)
Подставив (32) и (33) в (31), получим выражение для чувствительности компенсационной схемы:
(34)
Анализ формулы (34) показывает, что чувствительность схемы зависит от RK, а так как RK = (R/L)x, то чувствительность зависит от положения движка х. Чувствительность непостоянна в разных точках шкалы. На рис. 15 показана зависимость чувствительности от положения движка компенсирующего резистора. В начальном положении движка (RK = 0) чувствительность максимальна: . В среднем положении движка чувствительность минимальна, что необходимо учитывать при точных измерениях ЭДС.
Компенсационный метод измерения применяется в цепях как постоянного, так и переменного токов. Однако потенциометры переменного тока дают меньшую точность измерения и сложнее, поскольку необходимо компенсировать падение напряжения не только по абсолютной величине, но и по фазе. Это требует одновременного регулирования не менее двух параметров для обеспечения полной компенсации. На практике стремятся упростить мост переменного тока, выполняя одну пару плеч моста чисто активными, а другую пару — из однотипных элементов.
Рис. 15. Зависимость чувствительности компенсационной схемы от положения движка потенциометра
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы