2. Излучатели ультразвуковых колебаний
В ультразвуковых электрических датчиках наибольшее распространение получили магнитострикционные и пьезоэлектрические излучатели, возбуждаемые с помощью полупроводниковых и электронных генераторов, вырабатывающих переменное напряжение с частотой более 10 кГц. Часто применяется и импульсное возбуждение ультразвуковых излучателей.
Магнитострикционный излучатель стержневого типа (рис. 2, а) представляет собой набор тонких листов из ферромагнитного материала, на который намотана обмотка возбуждения. Чаще всего в магнитострикционных излучателях используется никель и его сплавы (инвар и монель), а также ферриты. Форма пластины показана на рис. 2, б.
Рис. 2. Магнитострикционный излучатель
Рис. 3. Зависимость относительного изменения длины от напряженности магнитного поля
Если стержень из ферромагнитного материала находится в переменном магнитном поле, то он будет попеременно сжиматься и разжиматься, т. е. деформироваться. Зависимость относительного изменения длины стержня из никеля от напряженности магнитного поляH показана на рис. .3. Так как знак деформации не зависит от направления поля, то частота колебании деформации будет в два раза больше частоты переменного возбуждающего поля. Для получения больших механических деформаций используют постоянное подмагничивание стержня, чтобы работать на наиболее крутом участке кривой (рис. 3).
Магнитострикционные излучатели работают в условиях резонанса, когда частота возбуждающего поля совпадает (настроена в резонанс) с частотой собственных упругих колебании стержня, которая определяется по формуле
(2)
где l — длина стержня; Е — модуль упругости; ρ — плотность материала.
Для никелевого стержня длиной l = 100 мм частота собственных колебаний составляет 24,3 кГц, амплитуда достигает примерно 1 мкм. Наивысшая частота, на которой еще удается возбудить достаточно интенсивные колебания, составляет 60 кГц, что соответствует длине 40 мм. Помимо основной частоты в стержне можно возбудить и колебания на высших гармониках (при соответствующем креплении стержня), но с меньшей амплитудой.
В пьезоэлектрическом излучателе ультразвуковых колебаний используется пластина кварца (рис. 4), к которой приложено переменное напряжение Ux, создающее электрическое поле в направлении электрической оси X (см. рис. 1). Продольный обратный пьезоэффект заключается в деформации пластины по оси X.
При этом относительное изменение толщины пластины
(3)
Рис 4. Пьезоэлектрический излучатель ультразвуковых колебаний
Поперечный обратный пьезоэффект заключается в деформации пластины в направлении механической оси Y. При этом относительное изменение длины пластины
(4)
Как видно из (3), продольная деформация не зависит от размеров пластины, а поперечная деформация, как следует из (4), увеличивается с ростом отношения l/а. При напряжениях до 2,5 кВ сохраняется прямая пропорциональность между величиной деформации и напряжением. При больших напряжениях деформация увеличивается не столь быстро и при Ux=25 кВ оказывается на 30 % меньшей, чем рассчитанная по (3) и (4). Амплитуда колебаний достигает максимума при равенстве частоты приложенного напряжения и частоты собственных колебаний пластины.
Частота собственных продольных колебаний определяется по формуле, аналогичной (4), где модуль упругости берется в направлении оси X:
(5)
Частота собственных поперечных колебаний зависит от модуля упругости в направлении оси Y:
(6)
Для кварцевых пластин [кГц] и [кГц], где размеры пластины выражены в сантиметрах.
По сравнению с магнитострикционными пьезоэлектрические излучатели обеспечивают значительно большую (на 1—2 порядка) частоту ультразвуковых колебаний.
Yandex.RTB R-A-252273-3- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы