2. Материалы для датчиков Холла и датчиков магнитосопротивления
Использование датчиков Холла для целей автоматического измерения будет рациональным в том случае, если они имеют достаточно высокую чувствительность и мало подвержены влиянию температуры. Чувствительность датчика зависит от выходной ЭДС, т. е. от постоянной Холла, которая, в свою очередь, определяется подвижностью носителей тока. В проводящих телах носителями тока являются электроны. При обычных температурах электроны находятся в хаотическом тепловом движении с самыми различными скоростями. Однако если вдоль тела создать электрическое поле Е, приложив напряжение U, то все электроны начнут передвигаться в направлении поля с некоторой средней скоростью v (при этом отдельные электроны могут иметь как большую, так и меньшую скорости). Подвижность носителей тока (т) определяется как отношение скорости v к напряженности электрического поля Е:
(3)
Подвижность зависит от того, как часто электрон при своем движении сталкивается с решеткой твердого тела. Следует особо отметить, что большое значение ЭДС Холла еще не означает, что в этом веществе велик эффект Холла и оно годится для технических применений. Большое значение ЭДС может быть получено за счет большого напряжения U, т. е. больших затрат электрической энергии. В то же время в другом материале такая же ЭДС Холла и те же скорости носителей тока могут быть получены при меньшем напряжении только за счет большей подвижности. Такой материал выгоднее для применения в датчике Холла.
Короче говоря, основным требованием, предъявляемым к материалам для датчиков, является сочетание большой подвижности носителей тока с минимальными температурными зависимостями.
В зависимости от технологии изготовления различают кристаллические (в форме пластинки) и пленочные датчики.
В качестве материала кристаллических датчиков используются различные соединения индия: мышьяковистый индий InAs, фосфид индия InP, сурьмянистый индий InSb, а также германий Ge и кремний Si.
Рис. 2. Зависимости постоянной Холла от температуры
Наибольшее значение постоянной Холла у материала InSb, но оно сильно зависит от температуры. На рис. 2 показаны зависимости постоянной Холла от температуры для разных материалов (1 — InSb, 2 — InAs, 3 — твердый раствор InAs и InP). Для германия постоянная Холла в десятки раз меньше, но он обладает значительно большим удельным сопротивлением. Из германия можно делать датчики с сопротивлением в несколько килоом. Еще большим удельным сопротивлением обладает кремний, но его труднее очистить от примесей. Высокую степень очистки полупроводниковых материалов получают при плавке в космических лабораториях.
Для размещения в узких зазорах очень удобны пленочные датчики Холла. Для их изготовления используется метод испарения в вакууме исходного вещества с последующим осаждением на подложку из слюды. Толщина пленочных датчиков составляет 10—30 мкм, что в сотни раз меньше, чем у кристаллических датчиков. Материалом для пленочных датчиков служат соединения ртути: селенид ртути HgSe и теллурид ртути HgTe. Чем тоньше пленка, тем меньше постоянная Холла. По своим возможностям применения в системах автоматики пленочные датчики примерно равноценны с германиевыми и даже лучше по температурной стабильности. Но они очень дорогие. В настоящее время проводятся исследования новых материалов, пригодных для использования в датчиках Холла и магнитосопротивления.
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы