2. Основные параметры и типы электромагнитных реле
К основным параметрам электромагнитных реле относятся следующие.
Ток срабатывания Iср, при протекании которого по обмотке реле происходит срабатывание электромагнита и переключение контактов.
Рабочий ток Iр, при котором обеспечивается надежное удержание контактов в переключенном состоянии. Обычно Iр > Iср
Ток отпускания Iотп, при котором электромагнит отпускает и контакты возвращаются в исходное состояние: Iотп < Iср
Допустимый ток через контакты Iк доп
Допустимое напряжение между контактами Uк доп, которое ограничивается напряжением пробоя между разомкнутыми контактами.
Время срабатывания tср— промежуток времени с момента подачи напряжения на обмотку реле до момента переключения контактов.
Время отпускания tотп— промежуток времени с момента снятия напряжения с обмотки реле до момента отпускания реле.
По мощности управления (электрической мощности, потребляемой обмоткой) реле разделяют на маломощные (Pк доп < 1 Вт), средней мощности (Рк доп =1÷10 Вт) и мощные (Рк доп > 10 Вт). Мощность управления определяется напряжением питания реле и током срабатывания.
По времени срабатывания электромагнитные реле подразделяются на быстродействующие (< 50 мс), нормальные (с) и замедленные (c).Для получения задержки срабатывания на время больше секунды служат специальные реле времени.
В зависимости от питания обмотки реле и способа создания магнитного поля различают электромагнитные реле постоянного и переменного тока. В свою очередь, электромагнитные реле постоянного тока разделяются на нейтральные и поляризованные. В нейтральных реле независимо от направления тока в обмотке срабатывают одни и те же группы контактов. В поляризованных реле при одном направлении тока в обмотке срабатывает одна группа контактов, при другом направлении тока — другая группа контактов.
По характеру движения якоря электромагнитные нейтральные реле разделяют на два типа: с поворотным якорем и с втяжным якорем.
Отечественная промышленность выпускает в большом количестве электромагнитные реле разных типов для разнообразного применения. Для промышленной автоматики в последнее время освоены промежуточные реле серий РП20, РП21 и РПЛ с приставками. Реле РП20 и РП21 применяются в цепях управления электроприводами с питанием от сети переменного тока напряжением до 440 В и от сети постоянного тока напряжением до 220 В. Они могут иметь устройства для гашения дуги и число контактов до 8. Реле РПЛ применяются для коммутации цепей переменного тока напряжением до 660 В и цепей постоянного тока напряжением до 440 В. К этим реле имеются приставки типа ПКЛ, отличающиеся числом контактов (до четырех размыкающих и замыкающих), приставки ПВЛ, обеспечивающие выдержку времени от 0,1 до 180 с, приставки ППЛ, обеспечивающие удерживание контактной системы реле во включенном состоянии после обесточивания обмотки реле.
Наиболее разнообразны реле для радиоэлектроники. Самые большие из них (типов РКА, РПН, МКУ-48 и др.) применяются главным образом в аппаратуре связи, но могут использоваться и для промышленной автоматики. Самые маленькие (типа РЭС) называются миниатюрными. Например, реле РЭС 80 имеет массу 2 г и габаритные размеры 5,3x10,4x10,8 мм. Элементы контактного узла миниатюрных реле крепятся непосредственно на металлических выводах цоколя.
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы