4.14.2. Электротехнические стали
Это сплавы железа с 0,5—5% .кремния, который образует с железом твердый раствор.
Кремний переводит углерод из формы цементита- в графит, действует как раскислитель, связывая вредные газы, прежде всего, кислород, способствует росту зерен, уменьшению констант магнитной анизотропии и магнитострикции, увеличивает сопротивление, т. е. уменьшает потери на вихревые токи.
При содержании Si>5% ухудшаются механические свойства, повышается твердость, хрупкость.
Вредные примеси: углерод, сера, кислород, марганец. Свойства стали существенно улучшаются при создании магнитной текстуры, создаваемой холодной прокаткой и отжигом, уменьшающей потери, приблизительно в 2 раза. При ребровой текстуре наилучшие магнитные свойства получаются в направлении прокатки, наихудшие — под углом 55° к направлению прокатки (рис.).
рис. 4.1.13.
При кубической текстуре (рис.) наилучшие магнитные свойства обеспечиваются в направлении ребер куба элементарных ячеек.
рис 4.1.14.
В обозначении марок электротехнических сталей используются четыре цифры, обозначающие: 1-я—структурное состояние и вид прокатки — цифра 1— горячекатанная изотропная, 2 — холоднокатанная изотропная, 3— холоднокатанная анизотропная с ребровой текстурой; вторая — содержание кремния в весовых процентах—классы 0,1,2,3,4,5с содержанием кремния от 0,4% Для класса 0 до 3,8—4,8% для класса 5; третья и четвертая цифры — гарантированные удельные потери и магнитная индукция. В табл. 4.13 приведены характеристики различных типов электротехнических сталей с толщиной листа 0,35 мм, применяемых в энергетическом машиностроении.
Таблица 4.13
Марка стали | Индукция В, Тл при напряженности магнитного поля Н, кА/м | Удельные потери Вт/кг (не более) | р, мк0мм | ||
| В1 | В10 | PI,0/50 Тл/Гц | PI,5/50 Тл/Гц |
|
1511 горячекатанная сталь | 1,30 | 1,9 | 1,35 | 3,0 | 0,6 |
2412 холоднокатанная сталь | 1,35 | 1,95 | 1,15 | 2,5 | 0,5 |
3415 холоднокатанная анизотропная сталь | В 0,1/1,61 | В 2,5/1,9 | 0,46 | 1,03 | 0,5 |
Для рассматриваемых сталей большое значение имеют удельные потери. Для оценки характеристик электротехнических сталей и сопоставления их с другими магнитными материалами приведем их усредненные значения:
μнач-200—600, μмах=3000—8000, Hs=10—65 А/м, В,=1,95— 2,02 Тл, р=0,25—0,6 мк0мм.
Электротехнические стали с высоким содержанием кремния следует применять, если требуются малые потери на гистерезис и вихревые токи и высокая проницаемость в слабых и средних полях. Холоднокатаные текстурованные стали имеют более высокую магнитную проницаемость в области слабых полей и более низкие удельные потери по сравнению с горячекатаными сталями.
После резки штамповки и др. операций с электротехнической сталью, появления наклепа, ухудшающего магнитные свойства, необходим отжиг в неокислительной среде при температуре 750—800°С.
- Предисловие.
- Введение
- Руководство по изучению дисциплины
- Проводники
- 1.2. Теплопроводность металлов
- 1.3. Термоэлектродвижущая сила
- 1.4. Зависимость удельного электрического сопротивления металлов от температуры
- 1.5. Электрические характеристики сплавов
- 1.6. Классификация проводниковых материалов
- 1.7. Материалы высокой проводимости
- 1.8. Сплавы высокого сопротивления
- 1.9. Контактные материалы
- 1.10. Сверхпроводники
- 1.11. Высокотемпературные сверхпроводники (втсп)
- 1.12. Криопроводники
- Контрольные вопросы по теме: «Проводниковые материалы».
- Проводниковые материалы
- Полупроводники
- 2.1. Определение и классификация
- 2.2. Основные параметры полупроводников.
- 2.3. Зависимость подвижности носителей заряда от температуры
- 2.4. Зависимость концентрации носителей заряда от температуры
- 2.6. Время жизни носителей и диффузионная длина
- 2.7. Основные эффекты в полупроводниках и их применение
- 2.8. Полупроводниковые материалы
- Контрольные вопросы к разделу Полупроводниковые материалы
- А) Равна подвижности дырок
- А) Температурой
- А) Простыми органическими п/п материалами
- А) Поликристаллический кремний
- Задачи и упражнения к разделу Полупроводники
- Введение
- 3.1 Поляризация диэлектриков
- 3.1.1 Определение поляризации
- 3.1.2 Диэлектрическая проницаемость
- 3.1.3 Классификация диэлектриков на линейные и нелинейные
- 3.1.4 Диэлектрики полярные, неполярные и с ионной структурой
- Метан сн4
- 3.1.5 Электронная поляризация
- 3.1.6 Ионная поляризация
- 3.1.7 Релаксационные виды поляризации
- 3.1.8 Зависимость диэлектрической проницаемости от температуры, давления, влажности, напряжения
- Влияние давления на ε учитывается барическим коэффициентом ε
- 3.1.9 Диэлектрическая проницаемость смесей
- 3.2 Электропроводность диэлектриков
- 3.2.1 Зависимость тока от времени приложения постоянного напряжения
- 3.2.2 Токи абсорбции
- 3.2.3 Общее выражение для удельной объемной электропроводности
- С учетом (3.2.4) получим
- 3.2.4 Поверхностное сопротивление твердых диэлектриков
- 3.2.5 Электропроводность газообразных диэлектриков
- 3.2.6 Электропроводность жидких диэлектриков
- 3.2.7 Электропроводность твердых диэлектриков
- 3.2.8 Зависимость удельной электропроводности от напряженности электрического поля
- 3.3 Диэлектрические потери
- 3.3.1 Определения
- 3.3.2 Полные и удельные диэлектрические потери
- 3.3.3 Потери на электропроводность
- 3.3.4. Релаксационные потери
- 3.3.5. Диэлектрические потери полимеров
- 3.3.6. Диэлектрические потери неорганических диэлектриков
- 3.3.7. Диэлектрические потери в неоднородных диэлектриках
- 3.4. Электрическая прочность диэлектриков
- 3.4.1 Пробивное напряжение и электрическая прочность
- 3.4.2 Электротепловой пробой
- 3.4.3. Пробой газообразных диэлектриков
- 3.4.4. Пробой жидких диэлектриков
- 3.4.5. Пробой твердых диэлектриков
- 3.5. Механические, термические и физико-химические свойства диэлектриков
- 3.6. Газообразные диэлектрики
- 3.7. Жидкие диэлектрики
- 3.8. Полимеры. Общие свойства
- 3.9. Синтетические полимеры
- 3.10. Пластмассы и пленочные материалы
- 3.11. Стекло и керамика
- 3.12. Лаки, эмали, компаунды
- 3.13. Слюда и слюдяные материалы
- 3.14. Активные диэлектрики
- Задачи и упражнения к разделу Диэлектрические материалы
- Консультация Напомним, что поляризованность есть электрический момент единицы объема
- Ответ: 0.025 нм
- 4. Магнитные материалы
- 4.1. Магнитные характеристики
- 4.2. Классификация веществ по магнитным свойствам
- 4.3. Природа ферромагнетизма
- 4.4. Доменная структура
- 4.5. Намагничивание магнитных материалов. Кривая намагничивания
- 4.6. Магнитный гистерезис
- 4.7. Структура ферромагнетиков
- 4.8. Магнитострикционная деформация
- 4.9. Магнитная проницаемость
- 4.10. Потери в магнитных материалах
- 4.11. Электрические свойства магнитных материалов
- 4.12. Классификация магнитных материалов
- 4.13. Основные параметры магнитотвердых материалов
- 4.14. Магнитомягкие материалы
- Тема 8. Магнито диэлектрики (мд)
- 4.14.1. Технически чистое железо
- 4.14.2. Электротехнические стали
- 4.14.3. Пермаллои
- 4.14.4. Альсиферы
- 4.14.5. Магнитомягкие ферриты.
- 4.14.6. Специальные магнитные материалы
- 14.4.7. Аморфные магнитные материалы (амм)
- 4.14.8. Магнито диэлектрики (мд)
- 4.15. Магнитотвердые материалы
- Тема 1. Сплавы на основе железа. Тема 2. Металлокерамические магниты Тема 3. Магнитотвердые ферриты Тема 4. Сплавы на основе редкоземельных металлов (рзм)
- 4.15.1. Сплавы на основе железа—никеля—алюминия
- 4.15.2. Металлокерамические магниты
- 4.15.3. Магнитотвердые ферриты
- 4.15.4. Сплавы на основе редкоземельных металлов (рзм)
- Контрольные вопросы к разделу «Магнитные материалы»
- А) температуру, при которой значение минимально;
- Задачи и упражнения к разделу “Магнитные материалы“
- Термины и определения Термины, использованные в эу в соответствии с госТом 22622 – 77
- Основные государственные стандарты на электротехнические материалы *
- Предметный указатель
- А люминий –15
- Литература.
- Содержание