4.4. Стабилизация нефти
Добываемые нефти могут содержать в различных количествах растворенные газы (азот, кислород, сероводород, углекислоту, аргон и др.), а также легкие углеводороды. При движении нефти от забоя скважины до нефтеперерабатывающего завода из-за недостаточной герметизации систем сбора, транспорта и хранения часто полностью теряются растворенные в ней газы и происходят значительные потери легких нефтяных фракций. При этом при испарении легких фракций, таких как метан, этан и пропан, частично уносятся и более тяжелые углеводороды бутан, пентан и др.
Предотвратить потери нефти можно путем полной герметизации всех путей движения нефти. Однако некоторое несовершенство существующих систем сбора и транспорта нефти, резервуаров, технологии налива и слива не позволяют доставить нефть на переработку без потерь легких фракций. Следовательно, необходимо отобрать газы и легкие фракции нефти в условиях промысла и направить их для дальнейшей переработки.
Основную борьбу с потерями нефти требуется начинать с момента выхода ее из скважины. Ликвидировать потери легких фракций нефти можно в основном применением рациональных систем сбора нефти и попутного нефтяного газа, а также сооружением установок по стабилизации нефти для ее последующего хранения и транспорта. Под стабилизацией нефти следует понимать извлечение легких углеводородов, которые при нормальных условиях являются газообразными, для дальнейшего их использования в нефтехимической промышленности. Степень стабилизации нефти, т. е. степень извлечения легких углеводородов, для каждого конкретного месторождения зависит от количества добываемой нефти, содержания в ней легких углеводородов, возможности реализации продуктов стабилизации, технологии сбора нефти и газа на промысле, увеличения затрат на перекачку нефти за счет повышения вязкости после стабилизации из-за глубокого извлечения легких углеводородов, влияния стабилизации на бензиновый фактор нефти.
Существуют два различных метода стабилизации нефти — сепарация и ректификация.
Сепарация — отделение от нефти легких углеводородов и сопутствующих газов однократным или многократным испарением путем снижения давления (часто с предварительным подогревом нефти).
Ректификация — отбор из нефти легких фракций при однократном или многократном нагреве и конденсации с четким разделением углеводородов до заданной глубины стабилизации.
Процесс сепарации может начинаться сразу же при движении нефти, когда из нее отбирается газ, выделившийся в результате снижения давления или повышения температуры. При резком снижении давления в сепараторе значительно увеличивается количество тяжелых углеводородов, уносимых свободным газом. При быстром прохождении нефти через сепаратор возрастает количество легких углеводородов в нефти.
Многоступенчатая система сепарации позволяет получить на первых ступенях метан, который направляется на собственные нужды или потребителям, а на последующих ступенях — жирный газ, содержащий более тяжелые углеводороды. Жирный газ отправляется на газобензиновые заводы для последующей переработки.
При наличии газобензинового завода (с учетом затрат на содержание и эксплуатацию установок многоступенчатой сепарации) экономически целесообразно применять двухступенчатую систему сепарации.
Для стабилизации нефти на промыслах используют в основном метод сепарации. Сосуд, в котором происходит отделение газа от нефти, называют сепаратором. В сепарационных установках происходит и частичное отделение воды от нефти. Применяемые сепараторы можно условно разделить на следующие основные типы:
1) по принципу действия — гравитационные, центробежные (гидроциклонные), ультразвуковые, жалюзийные и др.;
2) по геометрической форме и положению в пространстве — сферические, цилиндрические, вертикальные, горизонтальные и наклонные;
3) по рабочему давлению — высокого (более 2,5 МПа), среднего (0,6 — 2,5 МПа) и низкого (0 — 0,6 МПа) давления, вакуумные;
4) по назначению — замерные и рабочие;
5) по месту положения в системе сбора — первой, второй и концевой ступеней сепарации.
В сепараторах любого типа по технологическим признакам различают четыре секции:
I — основную сепарационную;
|
Рис. 4.5. Вертикальный сепаратор: / — корпус; 2 — поплавок; 3 — дренажная трубка; 4 — наклонные плоскости; 5 — патрубок для ввода газожидкостной смеси; 6 — регулятор давления; 7 — перегородка для выравнивания скорости газа; 8 — жалюзийная насадка; 9 — регулятор уровня; 10 — патрубок для сброса нефти; 11 — раздаточный коллектор; 12 — люк; 13 — заглушка; секции: / — сепарацион-ная; II — осадительная; III — отбора нефти; IV — каплеуловительная |
III — секцию отбора нефти, служащую для сбора и отвода нефти из сепаратора;
IV — каплеуловительную, находящуюся в верхней части аппарата и служащую для улавливания капельной нефти, уносимой потоком газа.
Эффективность работы аппаратов характеризуется количеством жидкости, уносимой газом, и количеством газа, оставшегося в нефти после сепарации. Чем ниже эти показатели, тем более эффективна работа аппарата.
Рассмотрим конструктивные особенности промысловых сепараторов.
В вертикальном цилиндри-ческом гравитационном сепараторе (рис. 4.5) газонефтяная смесь через патрубок поступает в раздаточный коллектор и через щелевой выход попадает в основную сепарационную секцию /. В осадительной секции II из нефти при ее течении по наклонным плоскостям происходит дальнейшее выделение окклюдиро-ванных пузырьков газа. Разгазированная нефть поступает в секцию ее сбора III, из которой через патрубок отводится из сепаратора. Газ, выделившийся из нефти на наклонных плоскостях, попадает в каплеуловительную секцию IV, проходит через жалюзийную насадку и по трубопроводу выходит из сепаратора. Капли нефти, захваченные потоком газа и неуспевающие осесть под действием силы тяжести, в жалюзийных решетках прилипают к стенкам и стекают по дренажной трубке в секцию сбора нефти.
Гидроциклонный двухъемкостный сепаратор (рис. 4.6) применяют на промыслах для работы на / ступени сепарации. Газонасыщенная нефть через тангенциальный вход поступает в гидроциклонную головку, где за счет центробежных сил нефть и газ разделяются на самостоятельные потоки. В верхнюю емкость нефть и газ поступают раздельно. Нефть по направляющей полке стекает на уголковый разбрызгиватель, в котором поток нефти разбивается на отдельные струи и происходит дальнейшее выделение газа. По сливной полке разгазированная нефть собирается в нижней емкости сепаратора. При достижении определенного объема нефти в нижней емкости поплавковый регулятор уровня через исполнительный механизм направляет дегазированную нефть в отводной трубопровод. Газ, отделившийся от нефти в дегазаторе, проходит в верхней емкости перфорированные перегородки, где происходит выравнивание скорости газа и частичное выпадение жидкости. Окончательная очистка газа происходит в жалюзийной насадке 7. Отделенная от газа жидкость по дренажной трубке 10 стекает в нижнюю емкость 9 [36].
|
Рис. 4.6. Гидроциклонный двухъемкостный сепаратор: 1 — тангенциальный ввод газонефтяной смеси; 2 — головка гидроциклона; 3 — отбойный козырек для газа; 4 — направляющий патрубок; 5 — верхняя емкость сепаратора; 6 — перфорированные сетки для улавливания капельной жидкости; 7 — жалюзийная насадка; 8 — отвод газа; 9 — нижняя емкость гидроциклона; 10 — дренажная трубка; 11 — уголковые разбрызгиватели; 12 — направляющая полка; 13 — перегородка; 14 — исполнительные механизмы |
Разработано и применяется большое число аппаратов для разгазирования и частичного обезвоживания нефти перед подачей ее на установку подготовки товарной нефти.
- Антонова е.О., Крылов г.В., Прохоров а.Д., Степанов о.А.
- Оглавление
- Глава 1 6
- Глава 2 22
- Глава 3 61
- Глава 4 107
- Глава 5 141
- Глава 6 155
- Глава 7 176
- Глава 8 182
- Предисловие
- Глава 1 краткие сведения из геологии
- 1.1. Гипотезы происхождения нефти
- 1.2. Условия залегания нефти, газа и воды в нефтяных и газовых залежах
- 1.3. Состав и свойства нефти
- 1.4. Состав и свойства природного газа
- 1.5. Свойства пластовых вод
- 1.6. Поиск и разведка месторождений нефти и газа
- 1.7. Запасы месторождений
- Глава 2 Бурение Нефтяных и Газовых Скважин
- 2.1. Классификация скважин
- 2.2. Элементы скважин
- 2.3. Общая схема бурения
- 2.4. Конструкция скважин
- 2.5. Буровые долота
- 2.5.1. Назначение и классификация
- 2.5.2. Долота для сплошного бурения лопастные долота
- Шарошечные долота
- Твердосплавные долота
- 2.5.3. Долота для колонкового бурения
- 2.6. Бурильная колонна
- 2.7. Механизмы для вращения долота
- 2.7.1. Роторы
- 2.7.2. Турбобуры
- 2.7.3. Электробуры
- 2.8. Промывка и продувка скважин
- 2.8.1. Назначение и классификация промывочных жидкостей
- 2.8.2. Промывочные жидкости на водной основе
- 2.8.3. Химическая обработка глинистого раствора
- 2.8.4. Приготовление и очистка глинистого раствора
- 2.8.5. Промывочные жидкости на неводной основе
- 2.8.6. Продувка скважин воздухом
- 2.9. Режим бурения
- 2.10. Разобщение пластов и заканчивание скважины
- 2.10.1. Элементы обсадной колонны
- 2.10.2. Условия работы обсадной колонны в скважине
- 2.10.3. Цементирование обсадных колонн
- 2.10.4. Оборудование забоя скважин и перфорация
- 2.10.5. Вызов притока нефти или газа из пласта
- 2.11. Буровые установки
- Глава 3 добыча нефти и газа
- 3.1. Пластовая энергия и силы, действующие в залежах
- 3.2. Режимы дренирования нефтяных и газовых залежей
- 3.2.1. Водонапорный режим
- 3.2.2. Упругий (упруговодонапорный) режим
- 3.2.3. Газонапорный режим
- 3.2.4. Газовый режим
- 3.2.5. Гравитационный режим
- 3.3. Системы разработки
- 3.4. Контроль и регулирование разработки нефтяной залежи
- 3.5. Разработка газовых месторождений
- 3.6. Разработка газоконденсатных месторождений
- 3.7. Искусственные методы воздействия на нефтяные пласты
- 3.8. Методы повышения нефтеотдачи и газоотдачи пластов
- 3.9. Способы эксплуатации нефтяных и газовых скважин
- 3.9.1. Фонтанная эксплуатация
- Классификация фонтанной арматуры
- Регулирование работы фонтанных скважин
- Борьба с отложениями парафина в фонтанных скважинах
- 3.9.2. Газлифтная эксплуатация
- 3.9.3. Насосная эксплуатация
- 3.9.4. Эксплуатация скважин бесштанговыми погружными насосами
- 3.9.5. Эксплуатация газовых и газоконденсатных скважин
- 3.10. Методы увеличения производительности скважин
- 3.10.1. Кислотные обработки скважин
- 3.10.2. Гидравлический разрыв пласта
- 3.10.3. Гидропескоструйная перфорация скважин
- 3.10.4. Виброобработка забоев скважин
- 3.10.5. Разрыв пласта давлением пороховых газов
- 3.10.6. Торпедирование скважин
- 3.10.7. Тепловое воздействие на призабойную зону скважин
- 3.11. Подземный ремонт скважин
- 3.11.1. Текущий ремонт
- 3.11.2. Капитальный ремонт скважин
- Глава 4 промысловый сбор и подготовка нефти и га3а к транспорту
- 4.1. Системы сбора нефти
- 4.1.1. Старые негерметизированные системы нефтегаюводосбора
- 4.1.2. Высоконапорные герметизированные и автоматизированные системы сбора и подготовки нефти, газа и воды [9, 38]
- 4.2. Подготовка нефти к транспорту
- 4.3. Основные способы отделения воды от нефти
- 4.3.1. Механическое обезвоживание нефти
- 4.3.2. Термическое обезвоживание нефти
- 4.3.3. Химическое обезвоживание нефти
- 4.3.4. Фильтрация
- 4.3.5. Теплохимическое деэмульгирование
- 4.3.6. Электрическое обезвоживание
- 4.4. Стабилизация нефти
- 4.5. Системы сбора и подготовки газа
- 4.6. Очистка газа от механических примесей
- 4.7. Методы предупреждения образования гидратов
- 4.8. Сорбционные методы осушки газа
- 4.8.1. Осушка газа абсорбентами
- 4.8.2. Осушка газа адсорбентами
- 4.8.3. Осушка газа молекулярными ситами
- 4.9. Осушка газа охлаждением
- 4.10. Одоризация газа
- 4.11. Очистка природного газа от сернистых соединений и углекислого газа
- Глава 5 основы трубопроводного транспорта нефти и газа
- 5.1. Классификация трубопроводов
- 5.2. Состав сооружений магистральных трубопроводов
- 5.2.1. Линейные сооружения магистральных трубопроводов
- 5.2.2. Перекачивающие и тепловые станции
- 5.2.3. Конечные пункты магистральных трубопроводов
- 5.3. Обоснование строительства и изыскания трасс магистральных трубопроводов
- 5.3.1. Выбор наиболее выгодного способа транспорта нефтяных грузов
- 5.3.2. Выбор наиболее выгодного способа транспортировки нефти и нефтепродуктов
- 5.3.3. Порядок проектирования магистральных трубопроводов
- 5.3.4. Изыскания трассы и площадок станций
- 5.3.5. Геологические, гидрологические и геофизические изыскания
- 5.3.6. Сбор климатологических и гидрометрических данных
- 5.3.7. Прочие изыскания по энергоснабжению перекачивающих станций
- Изыскания по водоснабжению и канализации
- 5.3.8. Отвод земель
- Глава 6 Глава 6 хранение нефти и нефтепродуктов
- 6.1. Классификация, зоны и объекты нефтебаз
- 6.2. Размещение нефтебаз и проводимые на них операции
- 6.3. Классификация резервуаров для нефти и нефтепродуктов
- 6.4. Стальные резервуары
- 6.5. Неметаллические резервуары
- 6.6. Подземные хранилища нефти и нефтепродуктов
- Глава 7 Общие сведения о транспорте газа
- 7.1. Железнодорожный транспорт сжиженных газов
- 7.2. Водный транспорт сжиженных газов
- 7.3. Автомобильный транспорт сжиженных газов
- 7.4. Трубопроводный транспорт сжиженных газов
- 7.5. Трубопроводный транспорт конденсата и широкой фракции легких углеводородов
- Глава 8 распределение и хранение газов
- 8.1. Газораспределительные станции магистральных газопроводов
- 8.2. Газораспределительные сети
- 8.3. Методы покрытия неравномерностей потребления газа
- 8.4. Хранилища природного газа
- 8.4.1. Газгольдеры
- 8.4.2. Накопление газа в последнем участке магистрального газопровода
- 8.4.3. Подземные хранилища
- Список литературы