4.9. Осушка газа охлаждением
Охлаждение широко применяется для осушки газа, выделения конденсата из газа газоконденсатных месторождений на установках низкотемпературной сепарации, а также для получения индивидуальных компонентов газа, выделения из природного газа редких газов, сжижения газов и т. д. Низкотемпературный способ разделения газов позволяет в зависимости от глубины охлаждения извлекать от 80 до 100 % тяжелых углеводородов и осушать газ при транспортировке однофазного компонента до необходимой точки росы по влаге и углеводородам. На практике применяют низкотемпературную сепарацию (НТС), при которой получают относительно невысокие температуры как за счет использования пластового давления, так и искусственного холода. Детандер (поршневой или турбинный) позволяет получить более глубокое охлаждение газа, а также продлить срок службы установок НТС. Применение искусственного холода (холодильных машин) в установках НТС позволяет обрабатывать газ до конца разработки месторождения, но при этом капитальные вложения в обустройство промысла увеличиваются в 1,5 — 2,5 раза [39].
Принципиальная технологическая схема НТС приведена на рис. 4.18. Сырой газ из скважины поступает на установку комплексной подготовки, где после предварительного дросселирования (или без него) направляется в сепаратор первой ступени 3 для отделения от капельной жидкости. Затем газ направляется в теплообменник 5 для охлаждения газом, поступающим в межтрубное пространство из низкотемпературного сепаратора 7. Из теплообменника газ поступает через эжектор 6 или штуцер в низкотемпературный сепаратор 7, в котором за счет понижения температуры в теплообменнике и на штуцере (эжекторе) выделяется жидкость. Осушенный газ поступает в теплообменник 5, охлаждает продукцию скважины и направляется в промысловый сборный коллектор. Нестабильный конденсат и водный раствор ингибитора (например, диэтиленгликоля ДЭГ), предотвращающий образование гидратов, из сепаратора первой ступени 3 поступают в конденсатосборник 4 и далее в емкость 10. Здесь происходит разделение конденсата и водного раствора ДЭГа. Затем конденсат через теплообменник 9 подается в поток газа перед низкотемпературным сепаратором, а водный раствор ДЭГа направляется через емкость 11 и фильтр 12 для очистки от механических примесей в регенерационную установку 13, после чего регенерированный гликоль из установки с помощью насоса 19 подается в шлейфы для предотвращения образования гидратов в них. Поток нестабильного углеводородного конденсата и водного раствора ДЭГ направляется в разделительную емкость 15 через межтрубное пространство теплообменников, где охлаждает нестабильный конденсат, поступающий из емкости 10 для впрыскивания в газовый поток.
Водный раствор гликоля через фильтр поступает в установку регенерации 14, после чего насосом 19 подается в газовый поток перед теплообменником 5. Конденсат из разделительной емкости 15 направляется через межтрубное пространство теплообменника 18 в деэтанизатор 16. Установка деэтанизации состоит из тарельчатой колонны, печи 17 и теплообменника 18. Заданная температура в нижней части деэтанизатора поддерживается с помощью теплообменника18, в котором стабильный конденсат (нижний продукт деэтанизатора), подогретый в печи 17 до температуры 433 К, отдает тепло насыщенному конденсату, поступающему из емкости 15. Охлажденный стабильный конденсат подается в конденсатопровод. По схеме предусматривается также ввод части холодного нестабильного конденсата на верхнюю тарелку стабилизатора. В этом случае деэтанизатор работает в режиме абсорбционноотпарной колонны.
|
Рис. 4.18. Технологическая схема НТС на газосборном пункте |
Если предусматривается транспортировка конденсата в железнодорожных цистернах, то стабилизация конденсата проводится в ректификационной колонне, работающей в режиме либо частичной, либо полной дебутанизации. Газ выветривания (дегазации) из емкости 15 и газ деэтанизатора 16 через штуцер поступает в общий поток.
Если давление невысокое, то предусматривают компрессор 8. Газ дегазации из емкости 10 также возвращается в общий поток. Периодический контроль за дебитами газа и жидкости осуществляется с помощью сепаратора 1, на выкидной линии которого установлены замерная диафрагма и конденсатосборник-разделитель 2 со счетчиками.
Если на устье скважины температура газа достаточно высокая и на его пути до газосборного пункта гидраты не образуются, то схема подготовки газа упрощается. На период добычи, когда требуются дополнительные источники холода на установке НТС для обеспечения требуемой точки росы газа, в схеме вместо штуцера устанавливают турбодетандер. При использовании турбодетандера эффект по снижению температуры в 3 — 4 раза больше, чем при обычном дросселировании. В этом случае в схеме предусматривается сепаратор второй ступени, предназначенный для отделения жидкости от газа, поступающего в турбодетандер. Осушенный газ из межтрубного пространства теплообменника 5 поступает на прием компрессора, установленного на одном валу с турбодетандером, и далее в промысловый коллектор.
Возможны модификации описанной схемы в соответствии с конкретными условиями. В частности, дополнительно к теплообменнику 5 устанавливают воздушный или водяной холодильник. По мере снижения пластового давления для поддержания постоянной температуры сепарации газа на установках НТС требуется последовательное увеличение поверхности теплообменников, что приводит к необходимости перестройки установки. Однако наступает такой период, когда это становится нерациональным. В таком случае производится охлаждение либо применяют другие способы подготовки газа.
Эффективность работы НТС любого типа существенно зависит от технологического режима эксплуатации скважины. В проектах разработки за оптимальное давление сепарации на газоконденсатных месторождениях принимается давление максимальной конденсации, которое для каждого состава газа определяется экспериментальным путем. Для обеспечения однофазного движения газа по магистральному газопроводу температура сепарации выбирается с учетом теплового режима работы газопровода.
- Антонова е.О., Крылов г.В., Прохоров а.Д., Степанов о.А.
- Оглавление
- Глава 1 6
- Глава 2 22
- Глава 3 61
- Глава 4 107
- Глава 5 141
- Глава 6 155
- Глава 7 176
- Глава 8 182
- Предисловие
- Глава 1 краткие сведения из геологии
- 1.1. Гипотезы происхождения нефти
- 1.2. Условия залегания нефти, газа и воды в нефтяных и газовых залежах
- 1.3. Состав и свойства нефти
- 1.4. Состав и свойства природного газа
- 1.5. Свойства пластовых вод
- 1.6. Поиск и разведка месторождений нефти и газа
- 1.7. Запасы месторождений
- Глава 2 Бурение Нефтяных и Газовых Скважин
- 2.1. Классификация скважин
- 2.2. Элементы скважин
- 2.3. Общая схема бурения
- 2.4. Конструкция скважин
- 2.5. Буровые долота
- 2.5.1. Назначение и классификация
- 2.5.2. Долота для сплошного бурения лопастные долота
- Шарошечные долота
- Твердосплавные долота
- 2.5.3. Долота для колонкового бурения
- 2.6. Бурильная колонна
- 2.7. Механизмы для вращения долота
- 2.7.1. Роторы
- 2.7.2. Турбобуры
- 2.7.3. Электробуры
- 2.8. Промывка и продувка скважин
- 2.8.1. Назначение и классификация промывочных жидкостей
- 2.8.2. Промывочные жидкости на водной основе
- 2.8.3. Химическая обработка глинистого раствора
- 2.8.4. Приготовление и очистка глинистого раствора
- 2.8.5. Промывочные жидкости на неводной основе
- 2.8.6. Продувка скважин воздухом
- 2.9. Режим бурения
- 2.10. Разобщение пластов и заканчивание скважины
- 2.10.1. Элементы обсадной колонны
- 2.10.2. Условия работы обсадной колонны в скважине
- 2.10.3. Цементирование обсадных колонн
- 2.10.4. Оборудование забоя скважин и перфорация
- 2.10.5. Вызов притока нефти или газа из пласта
- 2.11. Буровые установки
- Глава 3 добыча нефти и газа
- 3.1. Пластовая энергия и силы, действующие в залежах
- 3.2. Режимы дренирования нефтяных и газовых залежей
- 3.2.1. Водонапорный режим
- 3.2.2. Упругий (упруговодонапорный) режим
- 3.2.3. Газонапорный режим
- 3.2.4. Газовый режим
- 3.2.5. Гравитационный режим
- 3.3. Системы разработки
- 3.4. Контроль и регулирование разработки нефтяной залежи
- 3.5. Разработка газовых месторождений
- 3.6. Разработка газоконденсатных месторождений
- 3.7. Искусственные методы воздействия на нефтяные пласты
- 3.8. Методы повышения нефтеотдачи и газоотдачи пластов
- 3.9. Способы эксплуатации нефтяных и газовых скважин
- 3.9.1. Фонтанная эксплуатация
- Классификация фонтанной арматуры
- Регулирование работы фонтанных скважин
- Борьба с отложениями парафина в фонтанных скважинах
- 3.9.2. Газлифтная эксплуатация
- 3.9.3. Насосная эксплуатация
- 3.9.4. Эксплуатация скважин бесштанговыми погружными насосами
- 3.9.5. Эксплуатация газовых и газоконденсатных скважин
- 3.10. Методы увеличения производительности скважин
- 3.10.1. Кислотные обработки скважин
- 3.10.2. Гидравлический разрыв пласта
- 3.10.3. Гидропескоструйная перфорация скважин
- 3.10.4. Виброобработка забоев скважин
- 3.10.5. Разрыв пласта давлением пороховых газов
- 3.10.6. Торпедирование скважин
- 3.10.7. Тепловое воздействие на призабойную зону скважин
- 3.11. Подземный ремонт скважин
- 3.11.1. Текущий ремонт
- 3.11.2. Капитальный ремонт скважин
- Глава 4 промысловый сбор и подготовка нефти и га3а к транспорту
- 4.1. Системы сбора нефти
- 4.1.1. Старые негерметизированные системы нефтегаюводосбора
- 4.1.2. Высоконапорные герметизированные и автоматизированные системы сбора и подготовки нефти, газа и воды [9, 38]
- 4.2. Подготовка нефти к транспорту
- 4.3. Основные способы отделения воды от нефти
- 4.3.1. Механическое обезвоживание нефти
- 4.3.2. Термическое обезвоживание нефти
- 4.3.3. Химическое обезвоживание нефти
- 4.3.4. Фильтрация
- 4.3.5. Теплохимическое деэмульгирование
- 4.3.6. Электрическое обезвоживание
- 4.4. Стабилизация нефти
- 4.5. Системы сбора и подготовки газа
- 4.6. Очистка газа от механических примесей
- 4.7. Методы предупреждения образования гидратов
- 4.8. Сорбционные методы осушки газа
- 4.8.1. Осушка газа абсорбентами
- 4.8.2. Осушка газа адсорбентами
- 4.8.3. Осушка газа молекулярными ситами
- 4.9. Осушка газа охлаждением
- 4.10. Одоризация газа
- 4.11. Очистка природного газа от сернистых соединений и углекислого газа
- Глава 5 основы трубопроводного транспорта нефти и газа
- 5.1. Классификация трубопроводов
- 5.2. Состав сооружений магистральных трубопроводов
- 5.2.1. Линейные сооружения магистральных трубопроводов
- 5.2.2. Перекачивающие и тепловые станции
- 5.2.3. Конечные пункты магистральных трубопроводов
- 5.3. Обоснование строительства и изыскания трасс магистральных трубопроводов
- 5.3.1. Выбор наиболее выгодного способа транспорта нефтяных грузов
- 5.3.2. Выбор наиболее выгодного способа транспортировки нефти и нефтепродуктов
- 5.3.3. Порядок проектирования магистральных трубопроводов
- 5.3.4. Изыскания трассы и площадок станций
- 5.3.5. Геологические, гидрологические и геофизические изыскания
- 5.3.6. Сбор климатологических и гидрометрических данных
- 5.3.7. Прочие изыскания по энергоснабжению перекачивающих станций
- Изыскания по водоснабжению и канализации
- 5.3.8. Отвод земель
- Глава 6 Глава 6 хранение нефти и нефтепродуктов
- 6.1. Классификация, зоны и объекты нефтебаз
- 6.2. Размещение нефтебаз и проводимые на них операции
- 6.3. Классификация резервуаров для нефти и нефтепродуктов
- 6.4. Стальные резервуары
- 6.5. Неметаллические резервуары
- 6.6. Подземные хранилища нефти и нефтепродуктов
- Глава 7 Общие сведения о транспорте газа
- 7.1. Железнодорожный транспорт сжиженных газов
- 7.2. Водный транспорт сжиженных газов
- 7.3. Автомобильный транспорт сжиженных газов
- 7.4. Трубопроводный транспорт сжиженных газов
- 7.5. Трубопроводный транспорт конденсата и широкой фракции легких углеводородов
- Глава 8 распределение и хранение газов
- 8.1. Газораспределительные станции магистральных газопроводов
- 8.2. Газораспределительные сети
- 8.3. Методы покрытия неравномерностей потребления газа
- 8.4. Хранилища природного газа
- 8.4.1. Газгольдеры
- 8.4.2. Накопление газа в последнем участке магистрального газопровода
- 8.4.3. Подземные хранилища
- Список литературы