6. Очистка отходящих газов.
Особое место в производстве азотной кислоты занимают проблемы, связанные с экологией. Ещё не так давно отличительной особенностью установок по производству азотной кислоты было наличие бурого газа над выхлопной трубой (так называемый «лисий хвост»): оксид азота NO, не успевший окислиться в ходе процесса, покидая установку, окислялся уже за её пределами и превращался в диоксид азота NO2 бурого цвета. В связи с этим строили высокие выхлопные трубы, громоздкие системы очистки, состоящие из большого числа поглотительных башен для увеличения степени окисления NO в NO2 и повышения степени абсорбции газов.
Очистка газовой смеси основана на использовании каких-либо свойств компонентов. Отходящие газы производства азотной кислоты содержат различные оксиды азота: NO, NO2, N2O4, N2O3. Все оксиды, кроме NO, растворяются в воде, щелочах и в содовых растворах. Эквимолекулярные количества NO образуют с NO2 оксид азотистой кислоты N2O3 по уравнению:
NO + NO2 = N2O3.
Если максимально окислить NO до NO2 то оксиды азота (NO2 и N2O3) можно улавливать щелочными растворами:
2NO2 + 2NaOH = NaNO3 + NaNO2 + H2O
N2O3 + 2NaOH = 2NaNO2 + H2O.
В системах, работающих при атмосферном давлении, для полного окисления NO на завершающей стадии процесса устанавливали дополнительную окислительную колонну и поглотительную башню, орошаемую раствором соды или известковым молоком. Оксиды азота улавливались и превращались в смесь солей – нитрата и нитрита натрия (NaNO3 и NaNO2) или кальция.
Уравнения химических реакций:
N2O3 + Na2CO3 = 2NaNO2 + CO2
2NO2 + Na2CO3 = NaNO3 + NaNO2 + CO2
(NO + 3NO2 + 2Na2CO3 = NaNO3 + 3NaNO2 + 2CO2).
В щелочных башнях улавливается 6 – 7% оксидов азота от общего их содержания в нитрозных газах, поступающих на переработку. Газы, уходящие из щелочных башен, должны содержать около 0,1% NO. Получаются растворы, содержащие примерно 250 г/л NaNO2 и 50г/л NaNO3. Эти растворы называются нитрат-нитритные щелока, их используют для получения натриевой селитры. Для этого щелока обрабатывают 50%-й азотной кислотой, в результате нитрит инвертируется в нитрат:
3NaNO2 + НNO3 = 3NaNO3 + 2NO + H2O.
Полученные растворы, содержащие небольшое количество НNO3, нейтрализуют щелочью и затем упаривают.
Вместо раствора соды для улавливания оксидов азота применяют более дешевое известковое молоко. Получаются растворы Са(NO3)2 и Са(NO2)2. затем эти растворы обрабатывают азотной кислотой, получают кальциевую селитру, которую используют как удобрение. (Напишите уравнения реакций.)
На современных агрегатах для очистки отходящих газов от оксидов азота газы подогревают до 400ºС и после добавления к ним какого-либо восстановителя (это может быть водород, метан, аммиак и т.д.) направляют на каталитическое (Pd) восстановление.
Например, отходящие газы смешивают с природным газом (основной компонент – метан) и сжигают. При сжигании метан окисляется кислородом, присутствующим в хвостовых газах:
CH4 + 1/2O2 = CO + 2H2
(CH4 + 2O2 = 2H2O + CO2),
а затем взаимодействует с NO и NO2
CH4 + NO = 2N2+ 2H2O + CO2
CH4 + 2NO2 = 4NO + 2H2O + CO2.
Водород также взаимодействует с NO и NO2:
2H2 + 2NO = N2 + 2H2O
4H2 + NO2 = N2 + 4H2О.
Оксиды азота восстанавливаются до элементарного азота.
Все представленные реакции являются экзотермическими, поэтому температура в реакторе повышается до 750ºС, давление газов возрастает. Это позволяет направлять их в турбину и далее в котёл-утилизатор. Турбина приводит в движение турбокомпрессор, повышающий давление в установке, а тепло, отдаваемое горячим газом, позволяет получить дополнительное количество пара.
Таким образом, одновременно с очисткой, глубина которой достигает 0,004 – 0,006% по оксидам, удаётся полностью компенсировать энергетические затраты на работу установки.
Если в качестве восстановителя используется водород, то протекают следующие химические реакции:
2NO + 2H2 = N2 + 2H2O
2NO2 + 4H2 = N2 + 4H2O
Перспективным является использование в качестве восстановителя аммиака:
6NO + 4NH3 = 5N2 + 6H2O
6NO + 8NH3 = 7N2 + 12H2O.
Присутствие кислорода в нитрозных газах благоприятно, так как:
4NO + 4NH3 + O2 = 4N2+ 6H2O.
При избытке аммиака протекает реакция:
4NH3 +3O2 = 2N2 + 6H2O.
На некоторых заводах применяют очистку купоросным маслом, то есть серной кислотой, при этом образуется нитрозилсерная кислота:
2H2SO4 + NO·NO2 = 2HNSO5 + H2O.
Нитрозилсерная кислота используется в производстве серной кислоты башенным способом.
- Химическая технология неорганических веществ. Основные производства
- Химическая технология неорганических веществ. Основные производства
- Предисловие
- Лекции №1-2 получение синтетического аммиака
- 1. Общие сведения.
- 1.1.Свойства аммиака.
- 1.2. Значение и применение аммиака.
- 2.Физико-химические основы синтеза аммиака.
- 3. Технологическая схема синтеза аммиака при среднем давлении.
- 4. Основные направления развития производства аммиака.
- Лекции №3-4 химия и технология азотной кислоты.
- 1.Общие сведения.
- 1.1.Физические свойства Диаграммы состояния.
- 1.2. Химические свойства.
- 1.4. Применение азотной кислоты.
- 1.5. Способы получения азотной кислоты.
- 2. Получение неконцентрированной азотной кислоты из аммиака (химические уравнения и стадии).
- 3. Физико-химические основы процесса окисления аммиака.
- 3.1. Химические уравнения процесса окисления аммиака и их анализ.
- 3.2. Выбор оптимальных условий процесса окисления аммиака.
- 3.2.1. Катализаторы процесса окисления аммиака.
- 3.2.2. Скорость окисления аммиака.
- 3.2.3. Определение оптимальной температуры.
- 3.2.4. Определение оптимального давления процесса.
- 3.2.5. Состав газовой смеси.
- 4. Физико-химические основы процесса окисления нитрозных газов (no в no2).
- 5. Физико-химические основы процесса поглощения оксидов азота водой.
- 6. Очистка отходящих газов.
- Лекция № 5 Получение неконцентрированной азотной кислоты в промышленности.
- 1. Основные операции и принципиальная схема.
- 2. Технологические схемы производства неконцентрированной азотной кислоты.
- 3. Принципиальная технологическая схема получения неконцентрированной азотной кислоты под повышенным давлением
- Лекция № 6 Получение концентрированной азотной кислоты.
- 1. Общая характеристика методов получения концентрированной азотной кислоты.
- 2. Получение концентрированной азотной кислоты из разбавленных растворов.
- 3. Прямой синтез концентрированной азотной кислоты.
- 3.2. Основные стадии.
- 3.3. Технологическая схема производства концентрированной азотной кислоты прямым синтезом.
- Лекция № 7 Химическая технология серной кислоты
- 1. Общие сведения.
- 1.1 Значение и применение серной кислоты.
- 1.2 Свойства серной кислоты.
- 1.3 Сырьевые источники.
- 1.4. Промышленные сорта серной кислоты.
- 1.5. Способы получения серной кислоты.
- 2. Производство серной кислоты.
- 2.1. Основные стадии производства серной кислоты.
- 2.2. Получение диоксида серы so2.
- 3. Получение so2 из флотационного колчедана.
- 3.1. Основные стадии получения диоксида серы.
- 3.2. Физико-химические основы процесса обжига флотационного колчедана.
- 3.3. Очистка обжигового газа от пыли.
- 3.4. Специальная тонкая очистка печного газа
- 3.5. Осушка обжигового газа.
- 3.6. Принципиальная схема производства.
- Лекция №8 Получение диоксида серы из серы.
- Технологические свойства серы.
- 2. Теоретические основы горения серы.
- 3. Схема установки для сжигания серы в распылённом состоянии.
- 3.6. Схема производства серной кислоты из серы.
- Лекция № 9 физико-химические основы Контактного окисления диоксида серы
- Анализ химического уравнения.
- Выражение для константы равновесия.
- Кинетическое уравнение.
- 4. Выбор оптимальных условий ведения процесса.
- 4.1. Влияние состава исходной газовой смеси.
- 4.2. Влияние температуры.
- 4.3. Влияние давления.
- 4.4. Катализаторы
- Лекция №10 абсорбция. Очистка отходящих газов. Производство серной кислоты из сероводорода
- 1. Абсорбция триоксида серы.
- 2. Очистка отходящих газов.
- 3. Производство серной кислоты из сероводорода.
- 4. Основные направления совершенствования сернокислотного производства.
- Лекция № 11 Электрохимические производства.
- 1. Общие сведения.
- 2. Теоретические основы электролиза.
- 3. Электролиз воды.
- Лекция №12 Электролиз водного раствора хлорида натрия
- Общие сведения.
- 2. Электрохимические процессы, протекающие при электролизе водного раствора хлорида натрия.
- 3. Промышленные электрохимические методы получения хлора.
- 4. Электролиз водных растворов хлоридов с применением стального катода.
- 4.1. Приготовление и очистка рассола.
- 4.2. Побочные процессы электролиза.
- 4.4. Технологическая схема производства водорода, хлора и щелочи.
- 4.5. Выпаривание электролитического щёлока.
- 5. Электролиз водного раствора хлорида натрия с ртутным катодом.
- 5.1. Физико-химические основы процесса.
- 5.2. Принципиальная схема электролиза с ртутным катодом.
- Лекция №13 Производство хлористого водорода и соляной кислоты.
- 1. Свойства и применение хлористого водорода.
- 2. Способы производства хлористого водорода.
- 3. Теоретические основы синтеза хлористого водорода.
- 4. Абсорбция хлороводорода или получение соляной кислоты.
- 5. Схема получения хлороводорода и соляной кислоты.
- 6. Получение жидкого хлороводорода.
- Лекция № 14 Химическая технология Получения нитрата аммония или аммиачной селитры
- 1. Общие сведения.
- Физические свойства нитрата аммония.
- 1.2. Химические свойства нитрата аммония.
- 1.3. Технологические свойства.
- 1.4. Применение нитрата аммония.
- 1.5. Характеристика готового продукта.
- 2. Технология производства нитрата аммония.
- 2.1. Физико-химические основы процесса синтеза нитрата аммония.
- 2.2. Технологические схемы производства.
- 3. Техника безопасности в производстве аммиачной селитры.
- Лекция № 15 Производство карбамида.
- 1. Общие вопросы.
- 1.1. Свойства карбамида.
- 1.2. Применение карбамида.
- 1.3. Сырьё.
- 2. Физико-химические основы процесса синтеза карбамида.
- 2.1. Химические уравнения и их анализ.
- 2.2. Оптимальный технологический режим процесса синтеза карбамида.
- 3. Промышленные схемы производства карбамида.
- 4. Технологическая схема производства карбамида с полным жидкостным рециклом и двухступенчатой дистилляцией плава.
- 5.Стриппинг-процесс.
- Лекция №16 Производство кальцинированной соды или карбоната натрия.
- Общие сведения.
- 2. Свойства и нахождение в природе карбоната натрия.
- 3. Получение кальцинированной соды по способу Леблана.
- 4.1. Химические реакции их анализ.
- 4.2. Основные операции (или стадии) производства кальцинированной соды.
- 4.3 Теоретические основы производства кальцинированной соды аммиачным способом.
- 4.4. Принципиальная технологическая схема производства кальцинированной соды по аммиачному способу
- 5. Получение гидрокарбоната натрия
- Лекция № 17 производство гидроксида натрия или каустической соды химическим способом
- 1. Общие сведения.
- 2. Известковый способ производства гидроксида натрия
- Химические реакции
- Физико-химические основы процесса каустификации
- Основные операции технологического процесса.
- 3.Ферритный способ производства гидроксида натрия.
- 3.1. Сырьё.
- 3.2. Химические реакции.
- 3.3. Основные стадии.
- 3.4. Расходные коэффициенты.
- 3.5. Совершенствование метода.
- Элементы технологического расчёта реактора.
- Список рекомендуемой литературы
- Оглавление
- 650000, Кемерово, ул, Весенняя, 28.
- 650000, Кемерово, ул. Д.Бедного, 4а.