Тема 11. Системы высоких технологий и их рабочие процессы
План
1. Сущность систем высоких технологий.
2. Рабочие процессы высоких технологий.
3. Порядок разработки рабочих процессов высоких технологий.
4.Лазер и лазерные технологии.
1. Сущность систем высоких технологий (ВТ)
Каждое изделие, поставляемое в условиях жесткой конкуренции на внутренний и в особенности на внешний рынок, должно обладать новым уровнем свойств и отвечать все возрастающим требованиям, предъявляемым потенциальным потребителем к функциональным, экологическим и эстетическим свойствам.
Эти тенденции повышения требований потребителей к качеству изделий нашли свое отражение в международных стандартах серии 18О-9000. Получение такого уровня изделий все больше связывают с нетрадиционными конструкторскими и технологическими решениями, реализация которых не всегда возможна на основе использования технологии, оборудования, оснастки общего назначения и т.д., то есть на основе всего того, что составляет суть традиционных технологий.
В связи с этим все большее внимание специалистов привлекают нетрадииционные технологии, созданию которых предшествует накопление обширных данных фундаментальных и прикладных наук. В отличие от традиционных,, такие технологии называют «наукоемкими», «высокими», «прецизионными», «ультрапрецизионными», «нанотехнологиями» и др. Эти названия новых технологий связаны с тем или иным признаком технологического процесса или свойствами изделия, который принят в качестве определяющего, при этом во внимание чаще всего берется точность, обеспечиваемая данным рабочим процессом. Термин «нанотехнология» используется для определения систем оборудования и технологий интегрированного производства, которые обеспечивают обработку с точностью порядка 1 нм. В более широком плане «нанотехнология» занимается системами, новые функции и свойства которых зависят только от наноэффектов их компонентов», как звучит академическое определение понятия, которое дает союз немецких инженеров. Известно, например, что в мир микроизделий могут вести два пути: можно из массивной заготовки, например из кремния, шлифованием получать необходимое точное миниатюрное изделие. По этому принципу функционирует системная техника, которая в основном занимается структурами размеров от мм до мкм. Другой возможный путь: берутся отдельные атомы, молекулы или частички из них, которые как кирпичики создают желаемую структуру. Этот принцип применяется в нанотехнологии, которая занимается структурами размером до нанометров (млн. доля мм). Таким образом, термины, применяемые к новым технологиям, не являются исчерпывающими, т.к. не отражают всей многосложности и емкости новых технологий, всего спектра и нового уровня функциональных и других свойств макро- и микроизделий.
Представляется, что, независимо от используемой терминологии, все эти технологии объективно представляют собой составляющие единого, самостоятельного направления в рамках общей технологии машино- и приборостроения, суть которого более полно отражается в понятии высокие технологии.
Высокими следует считать такие технологии, которые, обладая совокупностью основных признаков — наукоемкостъ, системность, физическое и математическое моделирование с цепью структурно-параметрической оптимизации, высокоэффективный рабочий процесс размерной обработки, компьютерная технологическая среда и автоматизация всех этапов разработки и реализации, устойчивость и надежность, экологическая чистота, — при соответствующем техническом и кадровом обеспечении (прецизионное оборудование, оснастка и инструмент, определенный характер рабочей технологической среды, система диагностики, компьютерная сеть управления и специализированная подготовка персонала), гарантируют получение изделий, обладающих новым уровнем функциональных, эстетических и экологических свойств.
Именно новый уровень функциональных, эстетических и экологических свойств изделий при соблюдении экономической целесообразности интересует потребителя. Этим гарантируется конкурентоспособность новой продукции.
Достижению такого уровня свойств подчинены все структурные составляющие высоких технологий .
Наиболее общим и всеми воспринимаемым признаком высоких технологий является наукоемкостъ, отражающая то обстоятельство, что они базируются на новейших результатах фундаментальных и специальных прикладных исследований.
Системность предполагает диалектическую взаимосвязь, взаимодействие всех элементов технологической системы, всех основных процессов, явлений и составляющих. Системность особо важна как требование прецизионности и соответствие этим требованиям всех структурных элементов технологической системы обработки и сборки (оборудование, инструмент, обрабатываемый материал, оснастка, измерения, диагностика, работа исполнительных органов).
Важнейшим признаком ВТ, безусловно, является рабочий процесс. Он доминирует во всей технологической системе и должен отвечать самым разнообразным требованиям, но, главное, быть потенциально способным обеспечить достижение нового уровня функциональных свойств изделия. Здесь богатыми возможностями обладают те устойчивые и надежные рабочие процессы, в которых эффективно используются физические, химические, электрохимические и другие явления в сочетании со специальными свойствами инструмента, технологической среды, например криогенное резание, диффузионное формообразование изделий из алмазов и т.п.
Несомненно, существенным признаком ВТ является автоматизация, базирующаяся на компьютерном управлении всеми процессами проектирования, изготовления и сборки, на физическом, геометрическом и математическом моделировании, всестороннем анализе моделей процесса или его составляющих.
Наличие рассматриваемого признака требует системного подхода к ее компьютерно-интеллектуальной среде, т.е. перехода к системам САD/САМ System. Таким путем обеспечивается сочетание гибкости и автоматизации, прецизионности и производительности. Очевидно, специфика высоких технологий требует специализации таких систем на узкой группе изделий или признаков.
Системный подход предполагает использование не отдельных математических моделей, а системы взаимосвязанных моделей с непременной параметрической и структурной оптимизацией. Например, параметрическая оптимизация преследует цель минимизации ряда характеристик процесса размерной обработки, прежде всего энергетических затрат, минимизации толщины срезов, силы резания и уровня температуры, интенсивности окислительных и диффузионных процессов и т. д.
Для высокой технологии нужна высокая степень («глубина») оптимальности для сравнительно узкого конкретного диапазона условий и требований. Базой такой оптимальности могут быть только глубокие специальные исследования в этой области, разработка автоматизированных систем научного обеспечения, включая использование мирового опыта, специальных методов оптимизации, методов достижения прецизионности, технологического обеспечения функциональных свойств и др.
В современных условиях непременным признаком ВТ является их экологическая ориентация, гармонизация с окружающей средой. Важную роль играет техническое обеспечение высоких технологий, в рамках которого в качестве основных условий реализации выступают прецизионность оборудования, инструмента, оснастки, системы диагностики и контроля. Все это происходит в рамках основных направлений развития, например технологии размерной обработки, прежде всего создания новых рабочих процессов, прецизионного оборудования и средств технологического обеспечения, новых форм построения технологических процессов. Результаты развития каждого из этих направлений в сочетании с новейшими достижениями науки и смежных областей техники являются естественными истоками высоких технологий. При этом прогресс в создании рабочих процессов ВТ, как и традиционных ; технологий, является определяющим и характеризуется наиболее высокими темпами.
Изложенное представление о высоких технологиях позволяет выделить их в качестве самостоятельного раздела технологии машиностро-I ения. Область высоких технологий в этом плане, безусловно, обладает своей спецификой, и многие общие принципы технологии машиностроения становятся крайне не достаточными, а потому затруднительно их использование. Например, принципиальным отличием высоких технологий от аналоговых технологий является их ориентированная на объект индивидуализация, целевой характер, более жесткая связь с требованиями, вытекающими из заданного уровня функциональных, эстетических и экологических свойств изделий.
- Системы технологий
- 2. Форма организации технологической системы. Понятие о технологических процессах.
- 3. Связь технологии с экономикой. Качество продукции.
- 4. Материальные и энергетические балансы.
- Тема 2. Научно-техническая революция и научно-технический прогресс в промышленности
- 2. Научно-техническая революция и технология.
- 3. Научно-технический прогресс в области промышленных материалов.
- 4. Научно-техническая революция в области механизации и автоматизации производства.
- 5. Экологические проблемы научно-технического прогресса.
- Тема 3. Технологическая система Украины, экономические особенности Украины
- 2. Национальная технологическая система и её роль в формировании макроэкономических показателей.
- 3. Развал ссср и его влияние на состояние технологической системы в Украине и в странах снг.
- 4. Технологическая система и ее влияние на формирование внешних и внутренних цен.
- 5. Технологическая система и конкурентоспособность предприятий. Технологическая система Украины и мировой рынок.
- Тема 4. Этапы формирования национальной технологической системы Украины. Особенности технологического развития Украины
- 2. Переход к рынку и его влияние на состояние национальной технологической системы.
- 3. Технологические уклады в системе мирового технико-экономического развития.
- Тема 5. Сырье в промышленности
- 2. Минеральное сырье.
- 3. Горючее сырье, топливо.
- 4. Растительное и животное сырье.
- 5. Вода в промышленности.
- 6. Роль энергетики в промышленности.
- Тема 6. Металлургия
- 2.1. Производство чугуна, его свойства и область применения.
- 2.2. Производство стали, её свойства, общая схема производства и применение.
- 2.2.1. Производство стали в мартеновских печах: сырье, технологический процесс, экологические и энергетические особенности.
- 2.2.2. Конверторный способ производства стали: технологический процесс, преимущества и недостатки, качество стали.
- 2.2.3. Производство стали в электропечах.
- 3. Классификация стали по химическому составу, назначению и качеству.
- Тема 7. Заготовительное производство в машиностроении
- 2. Структура машиностроительного предприятия.
- 3. Сущность литейного производства и виды технологических процессов литья.
- 4. Обработка металлов давлением. Общие сведения о прокате.
- 5. Прямое и обратное прессование. Волочение. Производство сварных и бесшовных труб.
- 6. Кузнечно-штамповочное производство.
- 7. Современный машиностроительный комплекс Украины - состояние и пути развития.
- 8. Состояние отрасли станкостроения. Роль и место станкостроения в воспроизводстве и развитии промышленности.
- Тема 8. Технология обработки заготовок резанием
- 2.Металлорежущие станки, их классификация и назначение.
- 3.Токарные станки: общее устройство, виды выполняемых работ.
- 4. Фрезерные станки, общее устройство, виды выполняемых работ.
- 5. Сверлильные станки: общее устройство, виды выполняемых работ.
- 6. Обработка заготовок на строгальных и долбежных станках. Протяжные и прошивочные станки.
- 7. Отделочное производство: шлифование, полирование и т.Д.
- 8. Точность, качество и производительность обработки.
- Тема 9. Автоматизация производства в цехах с металлорежущим оборудованием
- 2.Автоматизация на базе станков с программным управлением.
- Тема 10. Некоторые технологии непроизводственной сферы
- 2.Технологическая система рекламной кампании
- 3. Некоторые этапы технологической системы рекламной кампании
- Тема 11. Системы высоких технологий и их рабочие процессы
- 2. Рабочие процессы вт
- 3.Порядок разработки рабочих процессов вт
- 4.Лазер и лазерные технологии.
- Тема 12. Новые информационные технологии
- 1. Сущность новых информационных технологий.
- 2. Принципы обработки информации в информационно вычислительных сетях
- 1. Сущность новых информационных технологий на современном этапе развития общества
- 2. Принципы обработки информации в информационно вычислительных сетях
- Литература