2. Устройство струнных датчиков
Для обеспечения требуемой точности, чувствительности и надежности струнных датчиков необходимо выбрать соответствующий материал струны. Этот выбор определяется как условиями применения датчика, так и способом возбуждения колебаний струны. К материалу струны предъявляются следующие требования: высокая прочность при вибрационных нагрузках, определенное значение температурного коэффициента линейного расширения (либо малое, либо равное этому же коэффициенту конструкционного материала датчика), независимость упругих свойств от времени и температуры.
Возможно применение как ферромагнитных, так и неферромагнитных материалов струны. При использовании ферромагнитной струны применяются электромагнитные возбудители колебаний. Под действием тока, протекающего по обмотке неподвижного электромагнита, к струне прикладывается сила притяжения, выводящая ее из состояния покоя. При использовании неферромагнитной струны применяются магнитоэлектрические возбудители колебаний. При пропускании через струну тока она испытывает силу притяжения (или отталкивания) к полюсам постоянного магнита.
Наибольшее распространение в струнных датчиках с электромагнитным возбуждением получили стальные струны из круглой рояльной проволоки диаметром 0,1—0,3 мм. При длине в 40—60 мм в таких струнах возбуждаются колебания с частотой 700—2000 Гц. В последнее время используются более гибкие и поддающиеся более надежному креплению стальные ленты толщиной 0,08—0,1 мм и шириной 1—2 мм. Частота колебаний стальной ленты достигает 3 кГц и выше. Стальные струны и ленты работают в режиме заданной длины. В этом режиме струна крепится к относительно более массивному упругому первичному преобразователю, изготовленному также из стали. Одинаковый температурный коэффициент линейного расширения материала струны и материала конструкции датчика позволяет уменьшить температурную погрешность.
В режиме заданной длины струна очень чувствительна к нестабильности крепления, а при использовании неферромагнитных струн обычно требуется изолировать хотя бы один из концов струны, что ухудшает механическую стабильность крепления. Поэтому неферромагнитные струны обычно используют в режиме заданной силы. В качестве материала применяют бериллиевую бронзу, вольфрамовые сплавы, а также специальный железокобальтовый сплав. Струны из вольфрамовых сплавов бывают как круглыми, так и лен-iочными. Другие материалы обычно используют в виде лент.
При выборе размеров струны исходят из следующих противоречивых требований. При малой длине уменьшаются габариты датчиков, повышаются чувствительность и виброустойчивость. Однако при этом увеличивается погрешность из-за несовершенства крепления и влияния собственной жесткости струны. Для обеспечения малой погрешности от собственной жесткости следует стремиться к выполнению условия , гдеl — длина струны, d — диаметр круглой или толщина ленточной струны. Обычно не рекомендуется выбирать длину струны l менее 20 мм. Сечение струны выбирается по требуемому пределу изменения натяжения и целесообразному механическому напряжению в струне. Например, для бронзы рекомендуется выбирать напряжение не более 0,5 % от модуля упругости.
Конструкция и материал крепления струны играют первостепенную роль для обеспечения стабильности струнного датчика. При малых механических напряжениях (до 200 Н/мм2) более хорошие результаты дают способы крепления, показанные на рис. 2. Крепление с помощью винта (рис. 2, а) приводит к значительному смятию струны и ухудшению стабильности. Более хорошие результаты дает крепление в щели (рис. 2, б). Ленточные струны закрепляют между двумя хорошо обработанными и подогнанными параллельными плоскостями (рис. 2, в). Таким же способом можно крепить и круглые струны. Для высокоточных датчиков применяют более сложные конструкции крепления струны. Для снятия механических напряжений при установке крепления используют температурное старение в виде нескольких циклов нагрева до 80—100 °С (по 4—8 ч каждый).
С помощью струнных датчиков возможно автоматическое измерение силы, давления, перемещения, ускорения, температуры и других неэлектрических величин. На базе струнных датчиков созданы также цифровые электроизмерительные приборы постоянного и переменного тока. Диапазон изменения выходного сигнала — частоты— составляет 300—500 Гц. Для исключения помех промышленной частоты стремятся увеличить минимальное значение частоты. Высокая частота облегчает и преобразование ее в цифровой код. Например, для получения погрешности дискретности счета, не превышающей 0,1 %, при частоте в 1000 Гц достаточно производить счет импульсов выходного сигнала датчика в течение 1 с. Наибольшее распространение получили струнные тензометры. Рассмотрим схему измерения с помощью струнного тензометра (рис. 3, а). В корпусе 1 закреплена струна 2, начальное натяжение которой может устанавливаться с помощью регулировочного винта 3. Колебания струны возбуждаются с помощью электромагнита 4. Выходной сигнал приемника 5, в качестве которого используется, например, электромагнитный трансформаторный датчик, измеряется частотомером. В струнных тензометрах применяются струны длиной 20—200 мм с начальным механическим напряжением 300—400 Н/мм2 и максимальным до 800 Н/мм2. С их помощью может быть обеспечена чувствительность измерения относительной деформации в 1 10-6.
Рис. 2. Способы крепления струны
Рис. 3. Струнный тензометр
На рис. 3, б показаны диаграммы напряжения, подаваемого на обмотку электромагнита 4, и напряжения, снимаемого с приемника 5 в режиме работы по запросу. Периодически посылаются сигналы запроса в виде одиночного импульса, а сигнал ответа имеет вид затухающих колебаний с частотой f, определяемой силой, приложенной к струне. Как следует из уравнения (1), эта зависимость имеет нелинейный характер. С помощью некоторых конструктивных мер можно уменьшить эту нелинейность. Но в датчиках с одной струной довольно трудно обеспечить нелинейность меньше чем 2—3 % от диапазона изменения частоты.
Рис. 4. Дифференциальный струнный датчик
Для увеличения точности преобразования и повышения линейности используют двухструнные дифференциальные датчики. Преобразователь силы в частоту (рис. 4) состоит из двух струн 1 и 2, размещенных под малым углом друг к другу и натянутых с силой 2F0, создаваемой пружиной 3.
Пружина 4 уравновешивает начальное натяжение F0 в струне 2. Измеряемая сила F, приложенная к рычагу 5, перераспределяет суммарную силу натяжения 2F0, увеличивая натяжение F2 струны 2 и уменьшая натяжение F1 струны 1. Под струнами 1 и 2 расположены возбудители колебаний 6 и 7 и приемники колебаний 8 и 9. Приемники подключены на вход усилителей 10 и 11, а возбудители — на выход этих усилителей. Напряжения с усилителей 10 и 11 с частотами соответственно f1 и f1 поступают на смеситель 12 и фильтр 13, на выходе которого получается сигнал разностной частоты . Для уменьшения нелинейности струна, работающая на укорочение, выбирается несколько большей длины.
ФОТОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы