4. Последовательность работы электромагнитного реле
Рассмотрим последовательность работы электромагнитного реле с момента подачи напряжения на обмотку реле до момента снятия напряжения с обмотки и возвращения якоря в исходное положение. Поскольку обмотка реле имеет индуктивное сопротивление, ток в ней не может измениться скачком. Изменение тока (как нарастание, так и убывание) происходит плавно по экспоненциальной кривой (рис. 5).
На рис. 5, показывающем изменение тока обмотки реле во времени, можно выделить четыре участка.
Рис. 5. График изменения тока в обмотке реле
Участок характеризует срабатывание реле. Он начинается с момента подачи напряжения на обмотку реле (точкаО) и заканчивается в момент надежного замыкания контактов (точка А). На этом участке происходит срабатывание реле, и продолжительность его называется временем срабатывания tср. Сразу после подачи напряжения ток в обмотке реле нарастает довольно быстро, поскольку постоянная времени сравнительно мала. Постоянная времени катушки, имеющей сопротивление R и индуктивность L, равна отношению L/R, а пока якорь не начал приближаться к сердечнику, магнитная цепь имеет большой зазор и, следовательно, индуктивность мала. Когда ток в обмотке реле достигнет значения Iтр, при котором начинает движение (трогается) якорь, зазор начнет уменьшаться, индуктивность будет возрастать, а скорость нарастания тока будет уменьшаться. Время срабатывания состоит из времени трогания tтр и времени движения якоря tдв (tср= tтр + tдв). В точке А ток имеет значение tср. Ток срабатывания больше тока трогания, поскольку за время tдв продолжалось его нарастание.
В точке А закончилось движение якоря. Начинается участок II, характеризующий реле в рабочем состоянии. Продолжительность этого участка tраб. В начале этого участка ток продолжает увеличиваться. В точке В рост тока прекращается, значение его определяется отношением напряжения на обмотке U к активному сопротивлению обмотки R. Это установившийся ток . УчастокАВ необходим для того, чтобы обеспечить надежное притяжение якоря к сердечнику, исключающее вибрацию якоря при сотрясениях реле. Отношение установившегося тока к току срабатывания Iср называется коэффициентом запаса реле по срабатыванию ; В то же время Iуст должен быть ограничен по соображениям нагрева.
Участок III начинается с момента снятия напряжения с обмотки реле. В точке С начинается уменьшение тока, и в точке D якорь начинает отходить от сердечника (отпускает). В этой точке ток Iот не обеспечивает такую силу притяжения, которая превышала бы противодействующую силу пружины. Время отпускания состоит из времени трогания и времени движения якоря до размыкания контактов: tот= tтр + tдв. Отношение тока отпускания к току срабатывания называется коэффициентом возврата: ;
На участке IV якорь возвращается в исходное состояние и остается в нем до тех пор, пока не будет снова подано напряжение на обмотку реле.
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы