1. Принцип действия
Работа пьезоэлектрического датчика основана на физическом явлении, которое называется пьезоэлектрическим эффектом. Этот эффект проявляется в некоторых кристаллах в виде появления на их гранях электрических зарядов разных знаков при сжатии кристалла в определенном направлении. Слово «пьезо» по-гречески означает «давлю». В зависимости от значения силы сжатия (или растяжения) меняется количество зарядов, а следовательно, и разность потенциалов, замеренная между гранями. Пьезоэлектрические датчики относятся к генераторному типу.
Широко известны пьезоэлектрические звукосниматели: игла звукоснимателя воспринимает все изменения глубины звуковой дорожки и передает их на пьезокристалл. Выходное напряжение с пьезокристалла усиливается, и через динамик мы слышим записанные звуки. Появление зарядов на гранях в зависимости от сжатия называется прямым пьезоэффектом. Существует и обратный пъезоэффект: при подаче напряжения на грани кристалла изменяются его размеры (он сжимается или разжимается). Обратный пьезоэффект нашел применение в ультразвуковых генераторах. А основанные на прямом пьезоэффекте пьезоэлектрические датчики используются в автоматике для измерения давлений, вибраций, ускорений, других параметров быстропротекающих процессов.
Рассмотрим появление зарядов на гранях кристалла кварца, у которого пьезоэлектрический эффект достаточно сильно выражен. На рис. 1 изображен кристалл кварца, который имеет вид шестигранной призмы. В кристалле можно выделить три оси симметрии: Z — продольная ось, называемая оптической осью; X — поперечная ось, проходящая через ребра призмы перпендикулярно продольной оси; Y — поперечная ось, проходящая через грани призмы перпендикулярно им и осям Z, X. Ось X называется электрической осью, ось Y — механической, или нейтральной.
Рис. 1. Кристалл кварца и его оси симметрии
Вырежем из кристалла кварца параллелепипед таким образом, чтобы его грани были перпендикулярны осям X, Y, Z, и рассмотрим появление зарядов на его гранях под действием сил, ориентированных по осям X, Y, Z, т. е. нормально к плоскостям граней. Под действием силы Fx вдоль электрической оси X на каждой из граней параллелепипеда, перпендикулярной оси X, появляются электрические заряды. Величина зарядов не зависит от геометрических размеров кристалла, а определяется силой Fx:
(1)
где К0 — пьезоэлектрическая постоянная материала, или пьезоэлектрический модуль. Знак зарядов (полярность) зависит от направления силы по оси X (сила сжатия или сила растяжения).
Под действием силы растяжения FY вдоль механической оси Y возникают заряды на тех же гранях, что и при действии силы Fx (т. е. на гранях, перпендикулярных оси X), но знак заряда будет тот же, что при действии силы сжатия Fx. Соответственно сила сжатия FY приводит к появлению зарядов на тех же гранях и того же знака, что сила растяжения Fx. Величина зарядов под действием сил FY зависит от геометрических размеров кристалла b и с (рис. 1) и пропорциональна силе:
(2)
Коэффициент K0 в формулах (1) и (2) один и тот же. Знак минус означает, что полярность заряда от сил сжатия по осям X и Y противоположна. Появление зарядов под влиянием силы Fx называется продольным пьезоэффектом, а под влиянием силы FY — поперечным пьезоэффектом. Сжатие или растяжение по оси Z не вызывает появления зарядов на гранях. Появляющиеся на гранях пьезоэлемента под действием сил Fx и FY электрические заряды исчезают, как только прекращается действие силы. Кроме того, даже если сила приложена постоянно, заряды стекают через воздух или изоляцию. Поэтому пьезоэлектрические датчики используют лишь для измерения динамических процессов, когда под действием переменных сил заряды на гранях все время восполняются. В пьезоэлектрических датчиках получили применение кроме кварца сегнетова соль и титанат бария. Свойства кристаллов этих материалов, имеющие значение для изготовления пьезодатчиков, приведены в табл. 1.
Таблица 1. Свойства пьезоэлектрических кристаллов
Кристалл | Пьезоэлектрический модуль К0, К/Н | Диэлектрическая проницаемость ε | Удельное сопротивление, Ом мм2/м |
Кварц | 2,1 10-3 | 4,5 | 1 1012– вдоль оптической оси. 2 1014- перпендикулярно оптической оси. |
Сегнетова соль | 2,1 | 9 103 | - |
Титанат бария | 0,225 | 104 | - |
Пьезоэлектрический модуль кварца сравнительно невысок. Но его главное достоинство — низкая стоимость. Ведь кварц — это один из самых распространенных породообразующих минералов, его состав (SiO2) тот же, что и у обычного песка. Кварц также имеет большую механическую прочность, хорошие изоляционные свойства, незначительную зависимость параметров от температуры.
Наиболее ярко пьезоэлектрический эффект выражен в кристаллах сегнетовой соли: при одной и той же силе появляется в тысячу раз большее количество электричества, чем у кварца. Однако эти заряды довольно быстро стекают из-за малого удельного сопротивления. Свойства сегнетовой соли изменяются в зависимости от температуры и влажности. Поэтому пьезоэлементы из сегнетовой соли применяются для измерения быстропеременных сил и давлений при малой влажности и нешироком диапазоне изменения температуры окружающей среды.
Титанат бария имеет и большое значение пьезоэлектрического модуля (на два порядка выше, чем у кварца), и высокую механическую прочность, и независимость параметров от изменения влажности. Его недостаток — старение, со временем он теряет свои свойства (примерно на 10 % за год).
- Основные определения и понятия предмета технические средства.
- Классификация элементов систем автоматики
- 1. Состав систем автоматики
- 2. Физические основы работы электромеханических и магнитных элементов
- 3. Статические характеристики
- 4. Динамические характеристики
- 5. Обратная связь в системах автоматики
- 6. Надежность элементов систем автоматики
- 1. Электрические измерения неэлектрических величин
- 2. Мостовая измерительная схема постоянного тока
- 3. Чувствительность мостовой схемы
- 4. Мостовая схема переменного тока
- 5. Дифференциальные измерительные схемы
- 6. Компенсационные измерительные схемы
- 7. Первичные преобразователи с неэлектрическим выходным сигналом
- 1. Типы электрических датчиков
- 2. Контактные датчики с дискретным выходным сигналом
- 1. Назначение. Принцип действия
- 2. Конструкции датчиков
- 3. Характеристики линейного потенциометрического датчика
- 4. Реверсивные потенциометрические датчики
- 5. Функциональные потенциометрические датчики
- 1. Назначение. Типы тензодатчиков
- 2. Принцип действия проволочных тензодатчиков
- 3. Устройство и установка проволочных тензодатчиков
- 4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- 5. Методика расчета мостовой схемы с тензодатчиками
- 1. Назначение. Типы электромагнитных датчиков
- 2. Принцип действия и основы расчета индуктивных датчиков
- 3. Дифференциальные (реверсивные) индуктивные датчики
- 4. Трансформаторные датчики
- 5. Магнитоупругие датчики
- 6. Индукционные датчики
- 1. Принцип действия
- 2. Устройство пьезодатчиков
- 3. Чувствительность пьезодатчика и требования к измерительной цепи
- 1. Принцип действия. Типы емкостных датчиков
- 2. Характеристики и схемы включения емкостных датчиков
- 1. Назначение. Типы терморезисторов
- 2. Металлические терморезисторы
- 3. Полупроводниковые терморезисторы
- 4. Собственный нагрев термисторов
- 5. Применение терморезисторов
- 1. Принцип действия
- 2. Материалы, применяемые для термопар
- 3. Измерение температуры с помощью термопар
- 1. Назначение и принцип действия
- 2. Устройство струнных датчиков
- 1. Назначение. Типы фотоэлектрических датчиков
- 2. Приемники излучения фотоэлектрических датчиков
- 3. Применение фотоэлектрических датчиков
- 1. Принцип действия и назначение
- 2. Излучатели ультразвуковых колебаний
- 3. Применение ультразвуковых датчиков
- 1. Физические основы эффекта Холла и эффекта магнитосопротивления
- 2. Материалы для датчиков Холла и датчиков магнитосопротивления
- 3. Применение датчиков Холла и датчиков магнитосопротивления
- Коммутационные и электромеханические элементы
- 1. Назначение. Основные понятия
- 2. Кнопки управления и тумблеры
- 3. Пакетные переключатели
- 4. Путевые и конечные выключатели
- 1. Режим работы контактов
- 2. Конструктивные типы контактов
- 3. Материалы контактов
- 1. Назначение. Принцип действия
- 2. Основные параметры и типы электромагнитных реле
- 3. Электромагнитные реле постоянного тока
- 4. Последовательность работы электромагнитного реле
- 5. Тяговая и механическая характеристики электромагнитного реле
- 6. Основы расчета магнитопровода электромагнитного реле
- 7. Основы расчета обмотки реле
- 8. Электромагнитные реле переменного тока
- 9. Быстродействие электромагнитных реле
- 1. Назначение. Принцип действия
- 2. Магнитные цепи поляризованных реле
- 3. Настройка контактов и устройство поляризованного реле
- 4. Вибропреобразователи
- 1. Типы специальных реле
- 2. Магнитоэлектрические реле
- 3. Электродинамические реле
- 4. Индукционные реле
- 5. Реле времени
- 7. Шаговые искатели и распределители
- 8. Магнитоуправляемые контакты. Типы и устройство
- 9. Применение магнитоуправляемых контактов
- Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- Мировые тенденции развития микропроцессорных птк
- Локальные промышленные сети
- Обзор промышленных сетей
- 1. Modbus
- 2. World-fip
- 1. Циклический трафик.
- 2. Периодический трафик.
- 3. Обслуживание сообщений.
- 3. Canbus
- 4. LonWorks
- 5. Hart
- 7. Bitbus
- 8. Profibus
- Общее заключение
- Принципы построения увк
- Современные управляющие вычислительные комплексы
- 1. Классификация исполнительных устройств
- 2. Пневматические исполнительные механизмы
- 3. Гидравлические исполнительные механизмы
- 4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- 5. Регулирующие органы