1. Пример постановки задачи оптимизации.
Для изготовления 3-х видов изделий А, В и С используется токарное, фрезерное, сварочное и шлифовальное оборудование. Затраты времени на обработку одного изделия приведены в таблице.
Определить, сколько изделий и какого вида следует изготовить предприятию, чтобы прибыль от их реализации была максимальной. Составить математическую модель задачи. Решение: Пусть будет изготовлено Х1 единиц изделия А Х2 единиц изделия В Х3 единиц изделия С. Тогда при использовании фрезерного оборудования потребуется затратить 2Х1 + 4Х2 + 5Х3 станко-часов. Но по условию ограничения общего фонда времени 2Х1 + 4Х2 + 5Х3 120. Аналогично для токарного, сварочного и шлифовального оборудования: 1)Х1 + 8Х2 + 6Х3 280 2)7Х1 + 4Х2 + 5Х3 240 3)4Х1 + 6Х2 + 7Х3 360 При этом, т.к. количество изготовляемых деталей не может быть отрицательным, то Х1 0, Х2 0, Х3 0. Далее, если будет изготовлено Х1 изделий А, Х2 изделий В и Х3 изделий С, то прибыль от их реализации составит F = 10Х1 + 14Х2 + 12Х3 Итак, мы получаем систему четырех линейных неравенств с тремя неизвестными (Xj (j = 1…3): 1)2Х1 + 4Х2 + 5Х3 120 2)Х1 + 8Х2 + 6Х3 280 3)7Х1 + 6Х2 + 7Х3 360 Х1 0, Х2 0, Х3 0. И линейную функцию F = 10Х1 + 14Х2 + 12Х3 относительно этих же переменных. Требуется среди всех неотрицательных решений системы неравенств найти такое, при котором целевая функция F принимает максимальное значение. Постановка задачи линейного программирования Найти оптимум (наибольшее или наименьшее значение) целевой функции (линейной формы) на области допустимых значений системы ограничений при наличии дополнительных условий неотрицательности переменных хj 0, j = 1,…, n. Если в системе ограничений l = m, т.е. она состоит только из уравнений, то соответствующая форма записи называется канонической.
- 1.Осн.Понятия и опр-я: инф-я, алгоритм, программа, команда, данные, технические устройства.
- 14. Програм-е для операционной системы windows.
- 3. Сс. Перевод чисел из одной сс в другую.
- 5. Повп. Алгоритм Фон-Неймана.
- 6. Принцип организац выч процесса. Гарвардская архитектура эвм.
- 12. Циклический вычислительный процесс
- 8.Адресация оперативной памяти. Сегментные регистры.
- 9. Система команд процессора i32. Способы адресации.
- 10. Скп i32. Машобработка. Байт способа адресации.
- 5. Усилители электрических сигналов.
- 11. Разветвляющий вычислительный процесс.
- 13. Рекурсивный вычислительный процесс.
- 1.Трансформаторы.
- 2. Машины постоянного тока.
- 3. Асинхронные и синхронные машины.
- 4. Элементная база современных электронных устройств
- 6. Основы цифровой электроники.
- 3. Типы адресации и система команд.
- 4. Структура процессора.
- 15. Модули последовательного ввода/вывода
- 11. Базовый функциональный блок микроконтроллера включает:
- 1.Принципы технического регулирования.
- 2. Технические регламенты.
- 3. Стандартизация.
- 5. Гос.Контроль за соблюд-ем треб-ий тех. Регламентов.
- 6.Метрология. Прямые и косвенные измерения.
- 1. Типы данных
- 1.Упрощение логических выражений
- 2.Функциональные схемы (лог.Диаграммы)
- 3. Искусственные нейронные сети.
- 4. Статистические методы принятия решений.
- 1.Задачи, решаемые методами искусственного интеллекта.
- 2.Модульное прогр-ие.
- 5. Програм-е в .Net Framework.
- 6. Унифицированный язык прогр-я uml.Назначение.
- 9. Этапы построения алгоритмов
- 13. C#.Полиморфизм.Перегрузка операций и методов.
- 14. C#.Наследование.Ограничения при наследовании.
- 1.Осн.Принципы сист.Подхода.
- 2. Система и моделирование. Классификация признаков.
- 3.Постановка задачи принятия решений.
- 5. Этапы системного подхода решения проблем.
- 6. Постановка задач оптимизации. Их классификация.
- 13. Нечеткие множества и их использование для принятия решений.
- 7. Условная оптимизация. Линейное программирование. Пример постановки задачи оптимизации.
- 1. Пример постановки задачи оптимизации.
- 9. Нелинейное программирование. Постановка задачи нелинейного программирования.
- 8. Методы решения задач линейного программирования. Геометрическая интерпретация.
- 10. Выбор альтернатив в многокритериальных задачах.
- 11. Классификация задач принятия решений. Структура системы принятия решений.
- Структура процесса принятия решений
- 2 Классификация моделей.
- 3 Свойства модели.
- 4 Жизненный цикл моделируемой системы:
- 5.Классификация математических моделей
- 6. Требования, предъявляемые к мат. Моделям
- 7. Модели и моделирование.
- 10. Алгоритм декомпозиции
- 8.Математические модели технических систем.
- 9. Декомпозиция систем.
- 1. Датчики измерения перемещений
- 5. Гироскопы.
- 4 Манометрические приборы
- 6. Преобразование измерительных сигналов.
- 7 Методы измерений
- 9.Системы технического зрения
- 10. Структура измерительных систем
- 11. Измерительные сигналы, виды, типы, модели сигналов. Классификация детерминированных сигналов.
- 12. Теория информации