logo
Shpory_Sistemnyy_analiz

3. Искусственные нейронные сети.

Искусственный нейрон (Математический нейрон МаккалокаПиттса, Формальный нейрон) — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона. Математически, искусственный нейрон обычно представляют как некоторую нелинейную функцию от единственного аргумента — линейной комбинации всех входных сигналов. Данную функцию называют функцией активации или функцией срабатывания, передаточной функцией. Полученный результат посылается на единственный выход. Такие искусственные нейроны объединяют в сети — соединяют выходы одних нейронов с входами других. Искусственные нейроны и сети являются основными элементами идеального нейрокомпьютера.

Схема искусственного нейрона 1.Нейроны, выходные сигналы которых поступают на вход данному 2.Сумматор входных сигналов 3.Вычислитель передаточной функции 4.Нейроны, на входы которых подаётся выходной сигнал данного 5.wiвеса входных сигналов

Искусственные нейронные сети (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

Схема простой нейросети. Зелёным обозначены входные элементы, жёлтым — выходной элемент.

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. В многослойных нейронных сетях (их часто называют персептронами) нейроны объединяются слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. В общем случае сеть состоит из нескольких слоев, пронумерованных слева на право. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько так называемых скрытых слоев.

Алгоритмы обучения бывают 3-х видов:

Обучение с учителем. При этом сети предъявляется набор обучающих примеров. Каждый обучающий пример представляют собой пару: вектор входных значений и желаемый выход сети. Скажем, для обучения предсказанию временных рядов это может быть набор нескольких последовательных значений ряда и известное значение в следующий момент времени. В ходе обучения весовые коэффициенты подбираются таким образом, чтобы по этим входам давать выходы максимально близкие к правильным.

Обучение с поощрением. При этом сети не указывается точное значение желаемого выхода, однако, ей выставляется оценка хорошо она поработала или плохо.

Обучение без учителя. Сети предъявляются некоторые входные векторы и в ходе их обработки в ней происходят некоторые процессы самоорганизации, приводящие к тому, что сеть становиться способной решать какую-то задачу.