§ 7.3. Электродвижущая сила катушечной группы
Обмотки статора разделяются на сосредоточенные и распределенные. При сосредоточенной обмотке все катушки одной фазы, приходящиеся на полюс и образующие катушечную группу, укладываются в двух пазах, т. е. сосредоточиваются вместе и образуют одну большую катушку. Примером такой обмотки может служить трехфазная обмотка, представленная на рис. 7.4. По ряду причин сосредоточенные обмотки не получили распространения. Одна из причин — необходимость вырубки в пластинах статора пазов большой площади, необходимой для размещения значительного числа пазовых сторон. Это ведет к необходимости увеличения наружного диаметра статора, а следовательно, к увеличению размеров машины.
В распределенных обмотках все катушки равномерно расположены по периметру расточки статора. При этом катушки каждой фазы, приходящиеся на полюс, т. е. катушки каждой катушечной группы, занимают более двух пазов, например четыре, шесть и т. д.
Весьма важным параметром обмотки статора является число пазов, приходящихся на полюс
q1 =Z1/(2pm1), (7.10)
где m1 — число фаз в обмотке (для трехфазной обмотки m1 = 3).
В сосредоточенной обмотке, где на пару полюсов приходится два паза каждой фазы, а всего пазов Z1 = 2pm1, число пазов на полюс и фазу q =1. В распределенной обмотке q > 1. В распределенной двухслойной обмотке статора число катушечных групп в каждой фазе равно числу полюсов 2р, а общее число катушечных групп трехфазной обмотки А = 2pml. При этом число катушек в катушечной группе равно q1. Однако сосредоточенные и распределенные обмотки различаются не только конструкцией. Имеется также разница и в величине и форме графиков ЭДС, наведенных в сосредоточенной и распределенной обмотках. Для разъяснения обратимся к рис. 7.7, где показаны две одновитковые катушки фазной обмотки, сосредоточенные в двух пазах (а), и такие же две катушки, образующие катушечную группу и сосредоточенные в четырех пазах (б).
В случае сосредоточенной обмотки (рис. 7.7, а) ЭДС, наведенные в двух катушках, совпадают по фазе; в этом случае ЭДС катушечной группы £r.с равна арифметической сумме ЭДС катушек:
Еr.c = Ек1 + Ек2. (7.11)
В случае распределенной обмотки обе катушки сдвинуты в пространстве относительно друг друга на пазовый угол γ. Поэтому ЭДС, наводимые в катушках катушечной группы, оказались сдвинутыми по фазе относительно друг друга на угол γ (рис. 7.7, б). Исходя из этого ЭДС катушечной группы распределенной обмотки Ег.р равна геометрической сумме ЭДС катушек, число которых равно q1 :
г.р =
Как видно из приведенных на рис. 7.7 векторных диаграмм, ЭДС катушечной группы сосредоточенной обмотки Еrс больше, чем ЭДС при распределенной обмотке Егр. Уменьшение
Рис. 7.7. К понятию о коэффициенте распределения
ЭДС катушечной группы при переходе от сосредоточенной обмотки к распределенной
распространяется на ЭДС не только первой, но и высших гармоник. Для количественной оценки этого уменьшения ЭДC пользуются коэффициентом распределения обмотки, представляющим собой отношение ЭДС:
kp = (Eг.р/Eг.с) < 1.
Коэффициент распределения обмотки для первой гармоники
kp = (7.12)
где γ - угол сдвига по фазе между векторами пазовых ЭДС, т. е. ЭДС, наводимых в проводниках, лежащих в соседних пазах статора, эл. град:
γ = 360p/Z1. (7.13)
Так как угол сдвига по фазе между векторами пазовых ЭДС для ν-й гармоники в ν раз больше пазового угла γ, то коэффициент распределения обмотки для любой гармоники ЭДС равен
kpv = (7.14)
Ниже приведены значения коэффициента распределения для первой, третьей, пятой и седьмой гармоник ЭДС:
-
Число пазов
на полюс и фазу
q1…
1
2
3
4
5
6
∞
Коэффициент
распределения kp
1-я гармоника
3-я » .............
5-я » .............
7-я » .............
1,000
1,000
1,000
-1,000
0,966
0,707
0,259
-0,259
0,960
0,667
0,217
-0,178
0,958
0,654
0,204
-0,157
0,957
0,646
0,200
-0,149
0,956
0,644
0,197
-0,145
0,955
0,636
0,191
-0,136
Из приведенных данных видно, что увеличение q1 вызывает сравнительно небольшое уменьшение коэффициента распределения для основной гармоники и значительное уменьшение его для высших гармоник.
- Введение § в.1. Назначение электрических машин и трансформаторов
- § В.2. Электрические машины — электромеханические преобразователи энергии
- § В.З. Классификация электрических машин
- Трансформаторы
- Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- § 1.2. Принцип действия трансформаторов
- §1.3. Устройство трансформаторов
- § 1.4. Уравнения напряжений трансформатора
- § 1.5. Уравнения магнитодвижущих сил и токов
- § 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- § 1.7. Векторная диаграмма трансформатора
- § 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- § 1.9. Явления при намагничивании магнитопроводов трансформаторов
- § 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- § 1.11. Опытное определение параметров схемы замещения трансформаторов
- § 1.12. Упрощенная векторная диаграмма трансформатора
- § 1.13. Внешняя характеристика трансформатора
- § 1.14. Потери и кпд трансформатора
- § 1.15. Регулирование напряжения трансформаторов
- Контрольные вопросы
- Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- § 2.2. Параллельная работа трансформаторов
- Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- § 3.2. Автотрансформаторы
- Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- § 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- 4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- § 5.2. Трансформаторы для выпрямительных установок
- § 5.3. Трансформаторы для автоматических устройств
- § 5.4. Трансформаторы для дуговой электросварки
- § 5.5. Охлаждение трансформаторов
- Контрольные вопросы
- 2 Раздел
- Глава 6
- § 6.1. Принцип действия синхронного генератора
- Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- § 6.2. Принцип действия асинхронного двигателя
- Контрольные вопросы
- Глава 7
- § 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- § 7.2. Электродвижущая сила катушки
- § 7.3. Электродвижущая сила катушечной группы
- § 7.4. Электродвижущая сила обмотки статора
- § 7.5. Зубцовые гармоники эдс
- Глава 8
- § 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- § 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- Для этой обмотки эквивалентные параметры будут
- § 8.3. Однослойные обмотки статора
- § 8.4. Изоляция обмотки статора
- Глава 9
- § 9.1. Магнитодвижущая сила сосредоточенной обмотки
- § 9.2. Магнитодвижущая сила распределенной обмотки
- Например, амплитуда основной гармоники мдс
- С учетом изложенного амплитуда мдс обмотки фазы статора
- Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- § 9.3. Магнитодвижущая сила трехфазной обмотки статора
- § 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- § 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- 3 Раздел
- Асинхронные машины
- Однофазные и конденсаторные асинхронные двигатели
- Глава 10
- § 10.1. Режим работы асинхронной машины
- § 10.2. Устройство асинхронных двигателей
- Глава 11
- §11.1. Основные понятия
- § 11.2. Расчет магнитной цепи асинхронного двигателя
- § 11.3. Магнитные потоки рассеяния асинхронной машины
- § 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- Контрольные вопросы
- Глава 12
- §12.1. Уравнения напряжений асинхронного двигателя
- § 12.2. Уравнения мдс и токов асинхронного двигателя
- § 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- Глава 13
- §13.1. Потери и кпд асинхронного двигателя
- § 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- Результаты расчета
- § 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- § 13.4. Рабочие характеристики асинхронного двигателя
- § 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- Контрольные вопросы
- Глава 14
- § 14.1. Основные понятия
- § 14.2. Опыт холостого хода
- Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- § 14.3. Опыт короткого замыкания
- § 14.4. Круговая диаграмма асинхронного двигателя
- § 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- § 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- Коэффициент мощности двигателя
- Глава 15
- §15.1. Пуск двигателей с фазным ротором
- § 15.2. Пуск двигателей с короткозамкнутым ротором
- § 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- § 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- Глава 16
- §16.1. Принцип действия и пуск однофазного асинхронного двигателя
- § 16.2. Асинхронные конденсаторные двигатели
- § 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- § 16.4. Однофазный двигатель с экранированными полюсами
- Глава 17
- § 17.1. Индукционный регулятор напряжения и фазорегулятор
- § 17.2. Асинхронный преобразователь частоты
- § 17.3. Электрические машины синхронной связи
- § 17.4. Асинхронные исполнительные двигатели
- § 17.5. Линейные асинхронные двигатели
- Глава 18
- §18.1. Нагревание и охлаждение электрических машин
- § 18.2. Способы охлаждения электрических машин
- § 18.3. Конструктивные формы исполнения электрических машин
- § 18.4. Серии трехфазных асинхронных двигателей
- Глава 21.
- Параллельная работа синхронных генераторов.
- § 21.1. Включение генераторов на параллельную работу.
- § 21.2. Нагрузка генератора, включенного на параллельную работу.
- § 21.3. Угловые характеристики синхронного генератора
- Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- § 21.4. Колебания синхронных генераторов
- § 21.5. Синхронизирующая способность синхронных машин
- Удельный синхронизирующий момент
- § 21.6. U-образные характеристики синхронного генератора
- § 21.7. Переходные процессы в синхронных генераторах
- §22.1. Принцип действия синхронного двигателя
- § 22.2. Пуск синхронных двигателей
- § 22.3. U–образные и рабочие характеристики синхронного двигателя
- § 22.4. Синхронный компенсатор
- Глава 23 • Синхронные машины специального назначения
- § 23.1. Синхронные машины с постоянными магнитами
- § 23.2. Синхронные реактивные двигатели
- § 23.3. Гистерезисные двигатели
- § 23.4. Шаговые двигатели
- § 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- § 23.6. Индукторные синхронные машины
- Раздел 5 коллекторные машины
- Глава 24
- § 24.1. Принцип действия генератора и двигателя постоянного тока
- § 24.2. Устройство коллекторной машины постоянного тока
- Глава 25
- § 25.1. Петлевые обмотки якоря
- § 25.2. Волновые обмотки якоря
- § 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- § 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- § 25.5. Выбор типа обмотки якоря
- Глава 26
- § 26.1. Магнитная цепь машины постоянного тока
- § 26.2. Реакция якоря машины постоянного тока
- 26.4. Магнитное поле машины и распределение магнитной индукции
- § 26.3. Учет размагничивающего влияния реакции якоря
- § 26.4. Устранение вредного влияния реакции якоря
- § 26.5. Способы возбуждения машин постоянного тока
- Глава 27
- § 27.1. Причины, вызывающие искрение на коллекторе
- Из одной параллельной ветви в другую
- § 27.2. Прямолинейная коммутация
- § 27.3. Криволинейная замедленная коммутация
- Замедленной (а) и ускоренной (б) видах коммутации
- § 27.4. Способы улучшения коммутации
- Зазоре машины с добавочными полюсами в
- Генераторном (г) и двигательном (д) режимах
- Добавочных полюсов
- § 27.5. Круговой огонь по коллектору
- И расположение между щетками (б)
- § 27.6. Радиопомехи от коллекторных машин и способы их подавления
- Контрольные вопросы
- Глава 28
- § 28.1. Основные понятия
- § 28.2. Генератор независимого возбуждения
- § 28.3. Генератор параллельного возбуждения
- § 28.4. Генератор смешанного возбуждения
- Глава 29
- § 29.1. Основные понятия
- § 29.2. Пуск двигателя
- § 29.3. Двигатель параллельного возбуждения
- § 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- § 29.5. Режимы работы машины постоянного тока
- § 29.6. Двигатель последовательного возбуждения
- § 29.7. Двигатель смешанного возбуждения
- § 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- § 29.9. Машины постоянного тока серий 4п и 2п
- § 29.10. Универсальные коллекторные двигатели
- Глава 30
- § 30.1. Электромашинный усилитель
- § 30.2. Тахогенератор постоянного тока
- § 30.3. Бесконтактный двигатель постоянного тока
- § 30.4. Исполнительные двигатели постоянного тока