§18.1. Нагревание и охлаждение электрических машин
Все виды потерь, происходящие в электрической машине, преобразуются в теплоту, которая частично идет на нагревание машины, а частично отдается в окружающую среду. Условно принято считать, что нагрев происходит равномерно по всему объему машины, а рассеивание теплоты происходит также равномерно со всей ее поверхности. В этих условиях уравнение теплового баланса имеет вид
q dt = тс dτ + Sλτ dt, (18. 1)
где q — количество теплоты, выделяемое в машине в единицу времени (Дж/с):
q = ∑Р
∑Р - суммарные потери мощности в двигателе, Вт; тс dτ — количество теплоты, расходуемое на нагревание машины; m — масса нагреваемой машины; с — удельная теплоемкость материала машины, т.е. количество теплоты, необходимое для нагревания 1 кг этого материала на 1°С; τ — превышение температуры нагрева машины над температурой окружающей среды; Sλτ — количество теплоты, рассеиваемое с поверхности двигателя в окружающее пространство в единицу времени; λ — коэффициент теплового рассеяния, т.е. количество теплоты, рассеиваемое с единицы поверхности машины в 1 с при превышении температуры на 1°С.
В начальный период работы машина имеет температуру нагрева, не отличающуюся от температуры окружающей среды Θ1 т.е. τ = 0. В этом случае рассеяния теплоты в окружающую среду не происходит, т.е. Sλτ dt = 0 и вся выделяемая в двигателе теплота идет на его нагревание. Затем, когда температура нагрева двигателя начинает превышать температуру окружающей среды, т.е. τ > 0, часть теплоты, выделяемой в двигателе, начинает рассеиваться в окружающую среду. И, наконец, когда температура нагрева машины достигает установившегося значения Θуст = const, вся выделяемая в машине теплота рассеивается в окружающую среду, т.е. наступает режим теплового равновесия:
q dt = Sλτуст dt (18.2)
где
τуст = Θуст – Θ1 (18.3)
Из (18.2)следует, что
τycm = q/ (Sλ) (18.4)
Выражение (18.4) позволяет сделать вывод:
а) установившаяся температура перегрева не зависит от массы машины m, а определяется количеством теплоты q, выделяемой в ней в единицу времени, т.е. мощностью потерь электрической машины АР;
б) установившаяся температура перегрева обратно пропорциональна площади охлаждаемой поверхности S и коэффициенту теплового рассеяния λ, т.е. зависит от интенсивности охлаждения машины; в машинах со специальными способами охлаждения (искусственно вентилируемых) τуст меньше чем у машин с естественной вентиляцией (при их одинаковой конструкции и условиях работы).
Если машина включается в сеть, когда ее температура равна температуре окружающей среды Θ1, то зависимость температуры перегрева этой машины τ от времени t выражается равенством:
τ = τуст (1 – е-t / TH ), (18.5)
где е = 2,718 — основание натуральных логарифмов; ТН — постоянная времени нагревания, показывающая время (с), необходимое для нагревания машины до установившейся температуры, если бы не было теплового рассеяния с ее поверхности.
График нагревания τ = f (t), построенный по (18.5), представляет собой экспоненциальную кривую, которая показывает, что машина нагревается до установившейся температуры перегрева τуст лишь спустя продолжительное время (рис. 18.1, а). Процесс нагревания сначала идет интенсивно, а затем, по мере приближения к установившейся температуре перегрева, замедляется. Теоретически машина достигает установившейся температуры перегрева за время t = ∞. Проведя касательную к графику нагревания в его начальной части, получим отрезок, который в масштабе времени определяет постоянную времени нагревания. Таким образом, физически величину ТН можно рассматривать как время, в
Рис. 18.1 Графики нагревания (а) и охлаждения (б) электрической машины
течение которого превышение температуры достигло бы установившегося значения τуст, если бы график нагревания представлял собой прямую линию. Принято считать, что в реальных условиях температура перегрева достигает установившегося значения за время нагревания t = (4 - 5) ТН.
Если машину отключить от сети, прекратив этим ее дальнейшее нагревание, то тепловое рассеяние с ее поверхности будет происходить за счет накопленной в ней теплоты. При этом температура перегрева машины будет понижаться до τ = 0, т.е. пока температура не станет равной температуре окружающей среды. Этот процесс остывания протекает по графику охлаждения (рис. 18.1, б), построенному по уравнению:
τ = τуст е – t / To , (18.6)
где Т0 — постоянная времени охлаждения, с.
Принято считать, что температура перегрева машины достигает практически нулевого значения за время охлаждения t = (4 —5)Т0.
Таким образом, постоянные времени нагревания и охлаждения характеризуют скорость процессов. Например, машина нагревается тем быстрее, чем меньше постоянная времени нагревания.
Итак, в процессе работы электрическая машина нагреваете, при этом для разных ее частей установлены предельно допустимые температуры перегрева.
Наиболее чувствительна к перегреву электрическая изоляция обмоток. Под действием температур, превышающих допустимые значения, ускоряется процесс теплового старения изоляции, ухудшающий ее изоляционные и механические свойства. Электроизоляционные материалы, применяемые в электротехнических изделиях, разделяются на пять классов нагревостойкости, обозначаемых А, Е, В, F и Н. В электрических машинах применяют изоляцию трех наиболее нагревостойких классов: В, F и Н. В процессе работы машины изоляция обмоток нагревается неравномерно, при этом измерение температуры нагрева в наиболее горячих точках технически невозможно. Поэтому, согласно действующему стандарту, предельные температуры нагревания изоляции обмоток принимают ниже предельно-допустимых значений соответствующего класса нагревостойкости:
Класс нагревостойкости изоляции | В | F | Н |
Предельно-допустимая температура нагрева изоляции, °С | 130 | 155 | 180 |
Предельно-допустимая температура нагрева обмоток двигателя,°С | 120 | 140 | 165 |
Предельно-допустимые превышения температуры обмоток при Θ1 = 40 °С | 80 | 120 | 125 |
Чрезмерный перегрев неблагоприятно влияет и на другие части машины, например, подшипники, контактные кольца и др.
Температура нагрева какой-либо части машины Θ2 при известной температуре ее перегрева τ и температуре окружающей среды Θ1 =40 °С:
Θ2 = τуст + Θ1 = τуст + 40. (18.7)
Для машин, работающих в условиях повышенных температур окружающей среды, например, в условиях металлургического производства, температуру Θ1, принимают более 40 °С.
Режимы работы электрических машин. В соответствии с действующим стандартом, существуют три основных номинальных режима работы электрических машин, различающиеся характером изменения нагрузки.
1.Продолжительный номинальный режим — когда при неизменной номинальной нагрузке Рн работа машины продолжается так долго, что температура перегрева всех ее частей успевает достигнуть установившихся значений τуст. Условное обозначение режима S1. Различают продолжительный режим с неизменной нагрузкой P = const (рис. 18.2, а) и продолжительный режим с изменяющейся нагрузкой (рис. 18.2, б). Например, двигатели насосов, транспортеров, вентиляторов работают в продолжительном режиме с неизменной нагрузкой, а двигатели прокатных станов, металлорежущих станков и т. п. работают в продолжительном режиме с изменяющейся нагрузкой.
2.Кратковременный номинальный режим S2 — когда периоды неизменной номинальной нагрузки чередуются с периодами включения двигателя (рис. 18.2, в). При этом, периоды нагрузки
Рис. 18.2. Номинальные режимы работы электрических машин:
а — с неизменной нагрузкой, б — с изменяющейся нагрузкой, в — кратковременный номинальный режим, г — повторно-кратковременный номинальный режим
двигателя tн настолько кратковременны, что температуры перегрева всех частей двигателя не достигает установившихся значений, а периоды отключения двигателя настолько продолжительны, что все части двигателя успевают охладиться до температуры окружающей среды. Стандартом установлена длительность периодов нагрузки 10; 30; 60 и 90 мин. В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, например S2 — 30 мин. В кратковременном режиме работают приводные двигатели шлюзов, разного рода заслонок и других запорных устройств, регулирующих подачу рабочего вещества (нефть, газ и др.) через трубопроводы к объекту потребления.
3) Повторно-кратковременный номинальный режим S3 - когда кратковременные периоды номинальной нагрузки двигателя tн чередуются с периодами отключения двигателя (паузами), причем за период нагрузки превышение температуры всех частей не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы двигателя в повторно-кратковременном режиме разделяется на периодически повторяющиеся циклы продолжительностью tц = tн + tп.
При повторно-кратковременном режиме график нагревания двигателя имеет вид пилообразной кривой (рис. 18.2, г). При достижении двигателем установившегося значения температуры перегрева, соответствующего повторно - кратковременному режиму τуст.к температура перегрева двигателя продолжает колебаться on τmin до τmах. При этом, τуст.к меньше установившейся температуры перегрева, которая наступила бы, если бы режим работы двигателя был продолжительным (τуст.к < τуст). Примерами повторно кратковременного режима являются работа электроприводов лифтов, подъемных кранов, экскаваторов и других устройств, для работы которых характерна цикличность (чередование периодов на грузки с паузами).
Повторно-кратковременный режим характеризуется относительной продолжительностью включения, %,
ПВ = (tн / tц). (5.8)
Действующим стандартом предусмотрены номинальные повторно-кратковременные режимы с ПВ 15, 25, 40 и 60% (для продолжительного режима ПВ = 100%). В условном обозначении повторно-кратковременного режима указывают величину ПВ например, S3 — 40%.
Рассмотренные три номинальных режима считают основными. В каталогах на двигатели, предназначенных для работы в каком либо из этих режимов, указаны номинальные данные, соответствующие режиму работы.
Помимо рассмотренных трех основных режимов, стандартом предусмотрены еще пять дополнительных режимов.
- Введение § в.1. Назначение электрических машин и трансформаторов
- § В.2. Электрические машины — электромеханические преобразователи энергии
- § В.З. Классификация электрических машин
- Трансформаторы
- Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- § 1.2. Принцип действия трансформаторов
- §1.3. Устройство трансформаторов
- § 1.4. Уравнения напряжений трансформатора
- § 1.5. Уравнения магнитодвижущих сил и токов
- § 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- § 1.7. Векторная диаграмма трансформатора
- § 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- § 1.9. Явления при намагничивании магнитопроводов трансформаторов
- § 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- § 1.11. Опытное определение параметров схемы замещения трансформаторов
- § 1.12. Упрощенная векторная диаграмма трансформатора
- § 1.13. Внешняя характеристика трансформатора
- § 1.14. Потери и кпд трансформатора
- § 1.15. Регулирование напряжения трансформаторов
- Контрольные вопросы
- Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- § 2.2. Параллельная работа трансформаторов
- Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- § 3.2. Автотрансформаторы
- Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- § 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- 4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- § 5.2. Трансформаторы для выпрямительных установок
- § 5.3. Трансформаторы для автоматических устройств
- § 5.4. Трансформаторы для дуговой электросварки
- § 5.5. Охлаждение трансформаторов
- Контрольные вопросы
- 2 Раздел
- Глава 6
- § 6.1. Принцип действия синхронного генератора
- Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- § 6.2. Принцип действия асинхронного двигателя
- Контрольные вопросы
- Глава 7
- § 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- § 7.2. Электродвижущая сила катушки
- § 7.3. Электродвижущая сила катушечной группы
- § 7.4. Электродвижущая сила обмотки статора
- § 7.5. Зубцовые гармоники эдс
- Глава 8
- § 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- § 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- Для этой обмотки эквивалентные параметры будут
- § 8.3. Однослойные обмотки статора
- § 8.4. Изоляция обмотки статора
- Глава 9
- § 9.1. Магнитодвижущая сила сосредоточенной обмотки
- § 9.2. Магнитодвижущая сила распределенной обмотки
- Например, амплитуда основной гармоники мдс
- С учетом изложенного амплитуда мдс обмотки фазы статора
- Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- § 9.3. Магнитодвижущая сила трехфазной обмотки статора
- § 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- § 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- 3 Раздел
- Асинхронные машины
- Однофазные и конденсаторные асинхронные двигатели
- Глава 10
- § 10.1. Режим работы асинхронной машины
- § 10.2. Устройство асинхронных двигателей
- Глава 11
- §11.1. Основные понятия
- § 11.2. Расчет магнитной цепи асинхронного двигателя
- § 11.3. Магнитные потоки рассеяния асинхронной машины
- § 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- Контрольные вопросы
- Глава 12
- §12.1. Уравнения напряжений асинхронного двигателя
- § 12.2. Уравнения мдс и токов асинхронного двигателя
- § 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- Глава 13
- §13.1. Потери и кпд асинхронного двигателя
- § 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- Результаты расчета
- § 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- § 13.4. Рабочие характеристики асинхронного двигателя
- § 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- Контрольные вопросы
- Глава 14
- § 14.1. Основные понятия
- § 14.2. Опыт холостого хода
- Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- § 14.3. Опыт короткого замыкания
- § 14.4. Круговая диаграмма асинхронного двигателя
- § 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- § 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- Коэффициент мощности двигателя
- Глава 15
- §15.1. Пуск двигателей с фазным ротором
- § 15.2. Пуск двигателей с короткозамкнутым ротором
- § 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- § 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- Глава 16
- §16.1. Принцип действия и пуск однофазного асинхронного двигателя
- § 16.2. Асинхронные конденсаторные двигатели
- § 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- § 16.4. Однофазный двигатель с экранированными полюсами
- Глава 17
- § 17.1. Индукционный регулятор напряжения и фазорегулятор
- § 17.2. Асинхронный преобразователь частоты
- § 17.3. Электрические машины синхронной связи
- § 17.4. Асинхронные исполнительные двигатели
- § 17.5. Линейные асинхронные двигатели
- Глава 18
- §18.1. Нагревание и охлаждение электрических машин
- § 18.2. Способы охлаждения электрических машин
- § 18.3. Конструктивные формы исполнения электрических машин
- § 18.4. Серии трехфазных асинхронных двигателей
- Глава 21.
- Параллельная работа синхронных генераторов.
- § 21.1. Включение генераторов на параллельную работу.
- § 21.2. Нагрузка генератора, включенного на параллельную работу.
- § 21.3. Угловые характеристики синхронного генератора
- Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- § 21.4. Колебания синхронных генераторов
- § 21.5. Синхронизирующая способность синхронных машин
- Удельный синхронизирующий момент
- § 21.6. U-образные характеристики синхронного генератора
- § 21.7. Переходные процессы в синхронных генераторах
- §22.1. Принцип действия синхронного двигателя
- § 22.2. Пуск синхронных двигателей
- § 22.3. U–образные и рабочие характеристики синхронного двигателя
- § 22.4. Синхронный компенсатор
- Глава 23 • Синхронные машины специального назначения
- § 23.1. Синхронные машины с постоянными магнитами
- § 23.2. Синхронные реактивные двигатели
- § 23.3. Гистерезисные двигатели
- § 23.4. Шаговые двигатели
- § 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- § 23.6. Индукторные синхронные машины
- Раздел 5 коллекторные машины
- Глава 24
- § 24.1. Принцип действия генератора и двигателя постоянного тока
- § 24.2. Устройство коллекторной машины постоянного тока
- Глава 25
- § 25.1. Петлевые обмотки якоря
- § 25.2. Волновые обмотки якоря
- § 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- § 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- § 25.5. Выбор типа обмотки якоря
- Глава 26
- § 26.1. Магнитная цепь машины постоянного тока
- § 26.2. Реакция якоря машины постоянного тока
- 26.4. Магнитное поле машины и распределение магнитной индукции
- § 26.3. Учет размагничивающего влияния реакции якоря
- § 26.4. Устранение вредного влияния реакции якоря
- § 26.5. Способы возбуждения машин постоянного тока
- Глава 27
- § 27.1. Причины, вызывающие искрение на коллекторе
- Из одной параллельной ветви в другую
- § 27.2. Прямолинейная коммутация
- § 27.3. Криволинейная замедленная коммутация
- Замедленной (а) и ускоренной (б) видах коммутации
- § 27.4. Способы улучшения коммутации
- Зазоре машины с добавочными полюсами в
- Генераторном (г) и двигательном (д) режимах
- Добавочных полюсов
- § 27.5. Круговой огонь по коллектору
- И расположение между щетками (б)
- § 27.6. Радиопомехи от коллекторных машин и способы их подавления
- Контрольные вопросы
- Глава 28
- § 28.1. Основные понятия
- § 28.2. Генератор независимого возбуждения
- § 28.3. Генератор параллельного возбуждения
- § 28.4. Генератор смешанного возбуждения
- Глава 29
- § 29.1. Основные понятия
- § 29.2. Пуск двигателя
- § 29.3. Двигатель параллельного возбуждения
- § 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- § 29.5. Режимы работы машины постоянного тока
- § 29.6. Двигатель последовательного возбуждения
- § 29.7. Двигатель смешанного возбуждения
- § 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- § 29.9. Машины постоянного тока серий 4п и 2п
- § 29.10. Универсальные коллекторные двигатели
- Глава 30
- § 30.1. Электромашинный усилитель
- § 30.2. Тахогенератор постоянного тока
- § 30.3. Бесконтактный двигатель постоянного тока
- § 30.4. Исполнительные двигатели постоянного тока