§ 11.3. Магнитные потоки рассеяния асинхронной машины
Помимо основного (главного) магнитного потока Ф, который сцепляется с обмотками статора и ротора (рис. 11.4), в асинхронной машине имеется еще два магнитных потока, называемых потоками рассеяния: магнитный поток рассеяния статора Фσ1 и магнитный поток рассеяния ротора Фσ2. Каждый из этих потоков рассеяния сцепляется лишь с собственной обмоткой и наводит в ней ЭДС рассеяния: в обмотке статора E σ1, в обмотке ротора E σ2.
Наличие магнитных потоков рассеяния обусловливает индуктивности рассеяния в обмотке статора L σ1 и в обмотке ротора L σ2, a следовательно, и индуктивные сопротивления, называемые индуктивными сопротивлениями рассеяния: x1 = ω1 L σ1 – индуктивное сопротивление рассеяния обмотки статора; x2 = ω2L σ2 — индуктивное сопротивление рассеяния обмотки ротора. Здесь ω1 и ω2 — угловые частоты токов в обмотках статора и ротора.
Индуктивное сопротивление рассеяния обмотки статора (Ом)
x1 = 1,58 • 10-8 f1 li1 ω12 λ1 / (pq1) (11.6)
Здесь
λ1 = λп1 + λд1 + λл1 (11.7)
— коэффициент магнитной проводимости рассеяния обмотки статора; λп1, λд1 и λл1 — коэффициенты магнитной проводимости пазового, дифференциального и лобового рассеяния статора.
Индуктивное сопротивление рассеяния обмотки ротора определяется выражениями, зависящими от типа обмотки ротора. Для короткозамкнутой обмотки при неподвижном роторе (Ом)
х2 = 7,9 • 10-9 f1 li2 λ2 (11.8)
Здесь
λ2 = λп2 + λд2 + λкл + λск (11.9)
— коэффициент магнитной проводимости рассеяния короткозамкнутой обмотки ротора: λп2, λд2, λкл и λск — коэффициенты магнитной проводимости рассеяния пазового, дифференциального, короткозамыкающих колец и скоса пазов короткозамкнутого ротора.
Если же ротор фазный и его обмотка выполнена по типу обмотки статора, то индуктивное сопротивление (Ом) рассеяния этой обмотки х2ф при неподвижном роторе (s = 1) определяется выражением, аналогичным (11.6):
x1 = 1,58 • 10-8 f1 li2 ω22 λ2ф / (pq2) (11.10)
где
λ2ф = λп2 + λд2 + λл2 (11.11)
Рис. 11.4. Магнитные потоки рассеяния асинхронной машины
В выражениях (11.6) и (11.10) расчетная длина сердечников статора li1, и ротора li2 — в миллиметрах.
Для расчета коэффициентов магнитной проводимости пользуются выражениями, приводимыми в руководствах по расчету электрических машин, например в [5] или [15].
- Введение § в.1. Назначение электрических машин и трансформаторов
- § В.2. Электрические машины — электромеханические преобразователи энергии
- § В.З. Классификация электрических машин
- Трансформаторы
- Глава 1 • Рабочий процесс трансформатора § 1.1. Назначение и области применения трансформаторов
- § 1.2. Принцип действия трансформаторов
- §1.3. Устройство трансформаторов
- § 1.4. Уравнения напряжений трансформатора
- § 1.5. Уравнения магнитодвижущих сил и токов
- § 1.6. Приведение параметров вторичной обмотки и схема замещения приведенного трансформатора
- § 1.7. Векторная диаграмма трансформатора
- § 1.8. Трансформирование трехфазного тока и схемы соединения обмоток трехфазных трансформаторов
- § 1.9. Явления при намагничивании магнитопроводов трансформаторов
- § 1.10. Влияние схемы соединения обмоток на работу трехфазных трансформаторов в режиме холостого хода
- § 1.11. Опытное определение параметров схемы замещения трансформаторов
- § 1.12. Упрощенная векторная диаграмма трансформатора
- § 1.13. Внешняя характеристика трансформатора
- § 1.14. Потери и кпд трансформатора
- § 1.15. Регулирование напряжения трансформаторов
- Контрольные вопросы
- Глава 2 • Группы соединения обмоток и параллельная работа трансформаторов § 2.1. Группы соединения обмоток
- § 2.2. Параллельная работа трансформаторов
- Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы
- § 3.2. Автотрансформаторы
- Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов
- § 4.2. Перенапряжения в трансформаторах и защита от перенапряжений
- 4.7. Начальное распределение напряжения по длине обмотки при заземленной (а) и изолированной (б) нейтралях
- Глава 5. Трансформаторные устройства специального назначения § 5.1. Трансформаторы с плавным регулированием напряжения
- § 5.2. Трансформаторы для выпрямительных установок
- § 5.3. Трансформаторы для автоматических устройств
- § 5.4. Трансформаторы для дуговой электросварки
- § 5.5. Охлаждение трансформаторов
- Контрольные вопросы
- 2 Раздел
- Глава 6
- § 6.1. Принцип действия синхронного генератора
- Эта формула показывает, что при неизменной частоте вращения ротора форма кривой
- § 6.2. Принцип действия асинхронного двигателя
- Контрольные вопросы
- Глава 7
- § 7.1. Устройство статора бесколлекторной машины и основные понятия об обмотках статора
- § 7.2. Электродвижущая сила катушки
- § 7.3. Электродвижущая сила катушечной группы
- § 7.4. Электродвижущая сила обмотки статора
- § 7.5. Зубцовые гармоники эдс
- Глава 8
- § 8.1. Трехфазные двухслойные обмотки с целым числом пазов на полюс и фазу
- Если половину катушечных групп каждой фазной обмотки соединить последовательно в одну ветвь, а затем две ветви соединить параллельно, то получим последовательно –
- § 8.2. Трехфазная двухслойная обмотка с дробным числом пазов на полюс и фазу
- Для этой обмотки эквивалентные параметры будут
- § 8.3. Однослойные обмотки статора
- § 8.4. Изоляция обмотки статора
- Глава 9
- § 9.1. Магнитодвижущая сила сосредоточенной обмотки
- § 9.2. Магнитодвижущая сила распределенной обмотки
- Например, амплитуда основной гармоники мдс
- С учетом изложенного амплитуда мдс обмотки фазы статора
- Мдс однофазной обмотки статора прямо пропорциональна переменному току в этой
- § 9.3. Магнитодвижущая сила трехфазной обмотки статора
- § 9.4. Круговое, эллиптическое и пульсирующее магнитные поля
- § 9.5. Высшие пространственные гармоники магнитодвижущей силы трехфазной обмотки
- 3 Раздел
- Асинхронные машины
- Однофазные и конденсаторные асинхронные двигатели
- Глава 10
- § 10.1. Режим работы асинхронной машины
- § 10.2. Устройство асинхронных двигателей
- Глава 11
- §11.1. Основные понятия
- § 11.2. Расчет магнитной цепи асинхронного двигателя
- § 11.3. Магнитные потоки рассеяния асинхронной машины
- § 11.4. Роль зубцов сердечника в наведении эдс и создании электромагнитного момента
- Контрольные вопросы
- Глава 12
- §12.1. Уравнения напряжений асинхронного двигателя
- § 12.2. Уравнения мдс и токов асинхронного двигателя
- § 12.3. Приведение параметров обмотки ротора и векторная диаграмма асинхронного двигателя
- Глава 13
- §13.1. Потери и кпд асинхронного двигателя
- § 13.2. Электромагнитный момент и механические характеристики асинхронного двигателя
- Результаты расчета
- § 13.3. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- § 13.4. Рабочие характеристики асинхронного двигателя
- § 13.5. Электромагнитные моменты от высших пространственных гармоник магнитного поля асинхронного двигателя
- Контрольные вопросы
- Глава 14
- § 14.1. Основные понятия
- § 14.2. Опыт холостого хода
- Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют
- § 14.3. Опыт короткого замыкания
- § 14.4. Круговая диаграмма асинхронного двигателя
- § 14.5. Построение рабочих характеристик асинхронного двигателя по круговой диаграмме
- § 14.6. Аналитический метод расчета рабочих характеристик асинхронных двигателей
- Коэффициент мощности двигателя
- Глава 15
- §15.1. Пуск двигателей с фазным ротором
- § 15.2. Пуск двигателей с короткозамкнутым ротором
- § 15.3. Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками
- § 15.4. Регулирование частоты вращения асинхронных двигателей Частота вращения ротора асинхронного двигателя
- Глава 16
- §16.1. Принцип действия и пуск однофазного асинхронного двигателя
- § 16.2. Асинхронные конденсаторные двигатели
- § 16.3. Работа трехфазного асинхронного двигателя от однофазной сети
- § 16.4. Однофазный двигатель с экранированными полюсами
- Глава 17
- § 17.1. Индукционный регулятор напряжения и фазорегулятор
- § 17.2. Асинхронный преобразователь частоты
- § 17.3. Электрические машины синхронной связи
- § 17.4. Асинхронные исполнительные двигатели
- § 17.5. Линейные асинхронные двигатели
- Глава 18
- §18.1. Нагревание и охлаждение электрических машин
- § 18.2. Способы охлаждения электрических машин
- § 18.3. Конструктивные формы исполнения электрических машин
- § 18.4. Серии трехфазных асинхронных двигателей
- Глава 21.
- Параллельная работа синхронных генераторов.
- § 21.1. Включение генераторов на параллельную работу.
- § 21.2. Нагрузка генератора, включенного на параллельную работу.
- § 21.3. Угловые характеристики синхронного генератора
- Индуктивное сопротивление реакции якоря по продольной оси [см. (20.24)]
- § 21.4. Колебания синхронных генераторов
- § 21.5. Синхронизирующая способность синхронных машин
- Удельный синхронизирующий момент
- § 21.6. U-образные характеристики синхронного генератора
- § 21.7. Переходные процессы в синхронных генераторах
- §22.1. Принцип действия синхронного двигателя
- § 22.2. Пуск синхронных двигателей
- § 22.3. U–образные и рабочие характеристики синхронного двигателя
- § 22.4. Синхронный компенсатор
- Глава 23 • Синхронные машины специального назначения
- § 23.1. Синхронные машины с постоянными магнитами
- § 23.2. Синхронные реактивные двигатели
- § 23.3. Гистерезисные двигатели
- § 23.4. Шаговые двигатели
- § 23.5. Синхронный генератор с когтеобразными полюсами и электромагнитным возбуждением
- § 23.6. Индукторные синхронные машины
- Раздел 5 коллекторные машины
- Глава 24
- § 24.1. Принцип действия генератора и двигателя постоянного тока
- § 24.2. Устройство коллекторной машины постоянного тока
- Глава 25
- § 25.1. Петлевые обмотки якоря
- § 25.2. Волновые обмотки якоря
- § 25. 3. Уравнительные соединения и комбинированная обмотка якоря
- § 25.4. Электродвижущая сила и электромагнитный момент машины постоянного тока
- § 25.5. Выбор типа обмотки якоря
- Глава 26
- § 26.1. Магнитная цепь машины постоянного тока
- § 26.2. Реакция якоря машины постоянного тока
- 26.4. Магнитное поле машины и распределение магнитной индукции
- § 26.3. Учет размагничивающего влияния реакции якоря
- § 26.4. Устранение вредного влияния реакции якоря
- § 26.5. Способы возбуждения машин постоянного тока
- Глава 27
- § 27.1. Причины, вызывающие искрение на коллекторе
- Из одной параллельной ветви в другую
- § 27.2. Прямолинейная коммутация
- § 27.3. Криволинейная замедленная коммутация
- Замедленной (а) и ускоренной (б) видах коммутации
- § 27.4. Способы улучшения коммутации
- Зазоре машины с добавочными полюсами в
- Генераторном (г) и двигательном (д) режимах
- Добавочных полюсов
- § 27.5. Круговой огонь по коллектору
- И расположение между щетками (б)
- § 27.6. Радиопомехи от коллекторных машин и способы их подавления
- Контрольные вопросы
- Глава 28
- § 28.1. Основные понятия
- § 28.2. Генератор независимого возбуждения
- § 28.3. Генератор параллельного возбуждения
- § 28.4. Генератор смешанного возбуждения
- Глава 29
- § 29.1. Основные понятия
- § 29.2. Пуск двигателя
- § 29.3. Двигатель параллельного возбуждения
- § 29.4. Регулирование частоты вращения двигателей параллельного возбуждения
- § 29.5. Режимы работы машины постоянного тока
- § 29.6. Двигатель последовательного возбуждения
- § 29.7. Двигатель смешанного возбуждения
- § 29.8. Потери и коэффициент полезного действия коллекторной машины постоянного тока
- § 29.9. Машины постоянного тока серий 4п и 2п
- § 29.10. Универсальные коллекторные двигатели
- Глава 30
- § 30.1. Электромашинный усилитель
- § 30.2. Тахогенератор постоянного тока
- § 30.3. Бесконтактный двигатель постоянного тока
- § 30.4. Исполнительные двигатели постоянного тока