2.9.2.2. Зм’якшення води в катіонітових установках
Зм’якшення освітленої в механічних фільтрах чи водопровідної води здійснюється в катіонітових фільтрах.
Катіонітовий фільтр – це зварний циліндр, що має сферичне верхнє і нижнє дно. Геометричні розміри катіонітових фільтрів залежать від їх продуктивності, збільшуючись зі збільшенням продуктивності. Фільтри мають діаметр корпус 1÷3м, висоту 3,5 – 6,5м.
Катіонітовий фільтр на 2/3 висоти заповнюється зернистою масою катіоніту. Освітлена вода надходить в розподільчу систему, розташовану в верхній частині фільтру, проходить зверху – вниз через катіоніт і виводиться через дренажну систему з фільтру. Остання складається з колекторів та відгалужень з них, які рівномірно розподілені по поперечному перетину фільтра. До них приварені вертикальні штуцери з різьбою, на які нагвинчуються дренажні ковпачки конічної форми з повздовжніми щілинними отворами.
В промислових котельнях як катіоніт використовували сульфовугілля (його робоча температура до 60 оС). Зараз в основному використовують як катіоніт синтетичні смоли (робоча температура до 100 – 120 оС).
Визначальною характеристикою катіоніту є його іонообмінна здатність. Розрізняють повну і робочу іонообмінну здатність.
Під повною іонообмінною здатністю мають на увазі кількість г-екв Са і Mg, яку може утримати 1м³ катіоніту до моменту, коли жорсткість зм’якшеної води зрівняється з жорсткістю висхідної води.
Під робочою іонообмінною здатністю розуміють кількість г-екв Са і Mg, яку утримує 1м³ катіоніту до моменту початку збільшення жорсткості води на виході з фільтру порівняно з необхідною жорсткістю зм’якшеної води.
Очевидно, що робоча іонообмінна здатність катіоніту менша повної. Повна іонообмінна здатність сульфовугілля складає 500-550 , а синтетичних іонообмінних складає 600 – 1700 .
Робочий цикл катіонітового фільтра включає такі етапи:
катіонування освітленої води при її русі зверху – вниз зі швидкістю 10-25 м/год, гідравлічний опір фільтра складає 4-15 метрів водяного стовпа;
відключення фільтру з моменту вичерпання робочої іонообмінної здатності катіоніту;
спушування катіоніту зворотним потоком хімочищеної води (знизу вверх) з метою рівномірного розподілу катіоніту в робочому об’ємі фільтра;
регенерація катіонітового фільтру, що полягає у відновленні іонообмінної здатності катіоніту, в процесі якої регенераційний розчин подається в верхню частину фільтра, проходить через катіоніт і зливається в дренаж;
відмивка фільтра після регенерації для видалення залишку регенераційного розчину (на спушування катіоніту і його відмивку після регенерації витрачають 4-5м³ води на 1м³ катіоніту);
включення в роботу катіонітового фільтру.
а) Na-катіонування води.
Катіоніт Na – катіонітових фільтрів має формулу Na2R, де R- складова частина катіоніту, яка приймає участь в катіонному обміні
При проходженні води через катіоніт іони Са і Mg, які є у воді, обмінюються на іони Na.
При цьому протікають такі основні реакції:
Na2R + CaSO4→CaR + Na2SO4
Na2R +MgSO4 →MgR + + Na2SO4 . (2-53)
а також, по аналогії з іншими солями Са і Mg неорганічних кислот, такими як CaCl2, MgCl2, Ca(NO3)2, Mg(NO3)2, Ca3(PO4)2, Mg3(PO4)2, що визначають постійну жорсткість води.
З бікарбонатами Са і Mg, які обумовлюють наявність тимчасової (карбонатної жорсткості води, реакції проходять таким чином:
Na2R + Ca(НСO3)2→CaR +2NaHCO3;
Na2R + Mg(НСO3)2→MgR + 2NaHCO3. (2-54)
При Nа-катіонуванні економічно-доцільним є доведення залишкової жорсткості Nа - катіонової води до значення 0,02÷0,01 .
Сумарний солевміст Nа - катіонованої води дещо зростає, оскільки 1 молекула Са молекулярною масою 40 або 1 молекула Мg молекулярною масою 24,32 заміщаються на 2 молекули Nа з загальною молекулярною масою 2∙23=46.
Зростає лужність води, оскільки додатково утворюється бікарбонат Nа→Na(HCO3) з бікарбонатів Са і Mg (солі карбонатної жорсткості переходять в бікарбонати Nа).
Відновлення іонообмінної здатності катіоніту (регенерація Nа- катіонових фільтрів) здійснюється 5-8% розчином NaCl. В результаті відбувається реакція:
CaR + 2NaCl→CaCl2 +Na2R, (2-55)
а утворений СаCl2 відводиться з водою в дренаж.
Застосовують одно- і двоступеневе Nа-катіонування. Одноступеневе забезпечує залишкову жорсткість води 0,03÷0,05 , а двоступеневе – до 0,01 .
При одноступеневому Nа-катіонуванні швидкість води у фільтрі (швидкість фільтрації) залежить від жорсткості висхідної, сирої води.
При її жорсткості до 5 швидкість фільтрації до 25 м/год, при жорсткості 5÷10 швидкість фільтрації 15 м/год, а при жорсткості 10÷15 - 10 м/год.
У фільтрах 2-ої ступені швидкості фільтрації збільшується до 60 м/год.
Швидкість проходження регенераційного розчину через шар катіоніту дорівнює 3-5 м/год. Витрата солі на регенерацію фільтрів при одноступеневому Nа-катіонуванні 150÷200 г на 1 загальної жорсткості, а при двохступеневому Nа- катіонуванні для фільтрів 1 ступеню – 120÷150 г на 1 , а для фільтрів 2 ступеню – 300÷400 г на 1 жорсткості.
Лише Nа- катіонування води застосовують для зм’якшення води з невеликою карбонатною жорсткістю води ( не більше 15÷20% від загальної жорсткості води).
Якщо ж величина карбонатної жорсткості співмірна з величиною постійної жорсткості, з метою нейтралізації лугу NaOH, який утворюється при розкладі бікарбонату натрію
NaHCО3→NaOH+ CО2, (2-56)
Nа-катіонування води доповнюють водень-катіонуванням води.
б) Водень (Н)-катіонування води.
В Н-катіонових фільтрах катіоніт має формулу НR.
При проходженні води через шар катіоніту відбуваються такі реакції.
а) із солями карбонатної жорсткості, як приклад:
2HR+ Ca(HCO3) → CaR2 + 2H2O + CO2
2HR + Mg(HCO3)2→ MgR2 +2H2O + CO2; (2-57)
б) із солями постійної жорсткості, як приклад:
2HR + Ca(SO4) → CaR2 + H2SO4
2HR + CaSiO3→ CaR2 + H2SiО3
2HR + CaCl2→ CaR2 + 2HCl (2-58)
Кислоти H2SO4, HCl, H2SiО3 та вуглекислий газ СО2 залишаються після Н-катіонітових фільтрів у розчині.
Нейтралізація кислот здійснюється лугом NaOH, який утворюється в результаті розкладу NaHCO .
Для цього потоки води після Na- і Н- катіонітових фільтрів необхідно змішати.
Карбонатна жорсткість води видаляється повністю.
Відновлення іонообмінної здатності катіоніту в Н-катіонітових фільтрах здійснюють 1%-м розчином сірчаної кислоти Н2SO4. В результаті відбуваються реакції відновлення катіоніту:
CaR2 + H2SO4→CaSO4 + 2HR,
MgR2 + H2SO4→ MgSO4 + 2HR. (2-59)
Швидкості фільтрації в Н-атіонітових фільтрах такі ж, як і в Na-катіонітових. Швидкість регенераційного розчину має бути не меншею 10м/год, щоб запобігти гіпсуванню катіоніту (СаSO4–гіпс).
Витрати кислоти на приготування регенераційного розчину складає 50-150 г/ , залежно від жорсткості і солевмісту висхідної води.
Застосовують послідовне або паралельне одно- чи двоступеневе Н-Na катіонування. Послідовне Н-Na катіонування застосовують при підвищеній жорсткості і солевмісту висхідної води.
в) Амоній катіонування води.
При застосуванні Н-катіонування є обов’язковим обладнання кислотного господарства для зберігання H2SO4, приготування регенераційного розчину, його зберігання в кислотостійких баках, наявності кислототривких насосів, трубопроводів і т.п.
Все зазначене збільшує капітальні витрати та ускладнює експлуатацію хімводоочистки. В промислових котельних і ТЕЦ замість Н-катіонування застосовують NH4 (амоній)- катіонування води.
Катіоніт в NH4-катіонітних фільтрах має формулу (NH4)R і при проходженні води через нього відбуваються такі реакції:
а) із солями карбонатної жорсткості:
2(NH4)R + Ca(HCO3)2 → CaR2 + 2NH4HCO3,
2(NH4)R + Mg(HCO3)2 →MgR2 + 2NH4HCO3; (2-60)
б) із солями постійної жорсткості (як приклад):
2(NH4)R + CaSO4 → CaR2 + (NH4)2SO4,
2(NH4)R + MgCl2 → MgR2 + 2NH4Cl,
2(NH4)R + CaSiO3 → CaR2 + (NH4)2SiO3. (2-61)
Таким чином у зм’ягченій воді появляються солі амонію і вона не є кислою.
В котлі під дією високої температури відбуваються реакції розкладу утворених в катіонітовому фільтрі солей амонію, а саме:
NH4HCO3 → NH3 + CO2 + H2O
(NH4)2SO4 → NH3 + H2SO4
NH4Cl → NH3 + HCl (2-62)
Аміак, NH3, і вуглекислий газ, CO2, видаляються з котла з парою, а кислоти H2SO4 і HCl накопичуються в котловій воді, що приведе до корозії металу елементів котла.
Тому NH4-катіонування застосовують лише разом з Na-катіонуванням.
Тоді одержаний в результаті розкладу NaHCO3 луг NaOH та наявна у воді сіль Na2CO3 реагують з кислотами, які з'явились у воді в результаті розкладу солей амонію, а саме:
NaOH + HCl → NaCl + H2O,
Na2CO3 + H2SO4 → Na2SO4 + H2O + CO2. (2-63)
Утворені в котлі NaCl і Na2SO4 у вигляді шламу видаляються з продувною водою з нижніх точок котла (періодична продувка).
Регенерацію NH4-катіонітових фільтрів здійснюють 2-3% розчином сульфату амонію, (NH4)2SO4. Його витрата складає 200 г/г-екв жорсткості висхідної води.
Обмеженням у застосуванні NH4-катіонування може стати наявність у парі аміаку, якщо йдеться про використання цієї пари в тепловикористовуючих установках, поверхня нагріву яких виконана з кольорових металів (мідь, латунь).
- 1.1 Економічна доцільність комбінованого (теплофікаційного) виробітку теплової і електричної енергії
- 2. Джерела теплопостачання
- 2.1. Паливо, що використовується в джерелах систем теплопостачання
- 2.1.1. Елементарний склад палива.
- 2.1.2. Вміст горючих елементів в твердому і рідкому паливі
- 2.1.3. Склад газоподібного палива
- 2.1.4. Теплота згорання палива
- 2.1.5. Технічні характеристики твердого палива
- 2.1.6. Технічні характеристики мазутів.
- 2.1.7. Властивості газу
- 2.2. Горіння палива
- 2.2.1. Стадії горіння різних палив
- 2.3. Підготовка палива до подачі його в котельню
- 2.3.1. Приймання, складування і подача твердого палива
- 2.3.2 Приймання зберігання, підготовка і подача мазуту для спалювання в котельні
- 2.3.3. Газопостачання котелень
- 2.4. Топки парових і водогрійних котлів
- 2.4.1. Шарові топки
- 2.4.2. Камерні топки котлів
- 2.4.3. Розмол палива перед його подачею в топку
- 2.5. Основні схеми генерації пари
- 2.6. Робочі процеси в парогенеруючих трубах парових котлів
- 2.6.1. Циркуляційний контур і його основні характеристики
- 2.6.2. Рушійний і корисний напори циркуляційного контуру
- 2.7. Конструктивні елементи котлоагрегатів
- 2.7.1. Парогенеруючі поверхні нагріву котлів
- 2.7.2. Пароперегрівники
- Схеми включення пароперегрівників
- 2.7.3. Регулювання температури перегрітої пари
- 2.7.4. Водяні економайзери
- 2.7.5. Повітряпідігрівники
- 2.7.6. Компоновка економайзерів і підігрівників
- 2.7.7. Каркас і обмурівка котлів
- 2.7.8. Арматура парових котлів
- 2.7.9. Гарнітура котлів
- 2.7.10. Підвищення якості насиченої пари
- 2.8.Тепловий баланс теплового котла
- 2.8.1. Коефіцієнт корисної дії парового котла
- 2.8.2. Аналіз теплових втрат котла
- 2.9. Підготовка живильної води для котлів
- 2.9.1 Показники якості води
- 2.9.2. Технологічний процес підготовки живильної води
- 2.9.2.2. Зм’якшення води в катіонітових установках
- 2.9.2.3. Деаерація живильної води
- 2.9.2.4. Норми якості живильної і котлової води і вибір схеми хімічної очистки води
- 2.10. Теплові схеми джерел теплопостачання
- 2.10.2. Принципова схема тец промислового підприємства
- 2.10.3. Принципова теплова схема водогрійної котельні
- 3. Системи теплопостачання
- 3.1. Характеристика споживачів теплової енергії
- 3.2. Визначення витрати теплоти на різні види теплового навантаження
- 3.2.1. Витрати теплоти на теплове навантаження опалення
- 3.2.2. Витрати теплоти на вентиляцію
- 3.2.3. Витрата теплоти на цілорічне теплове навантаження
- 3.2.4. Графік залежності величин теплового навантаження опалення, гвп і вентиляції від температури зовнішнього повітря
- 3.3. Водяні системи теплопостачання
- 3.3.1.Закриті системи теплопостачання
- А. Приєднання опалювальних установок до теплової мережі
- Б. Приєднання установок гвп до теплових мереж
- В. Приєднання теплових навантажень опалення і гвп на одному абонентському вводі
- 3.3.2. Відкриті системи теплопостачання
- 3.4. Парові системи теплопостачання
- 3.6. Регулювання централізованого теплопостачання
- 3.7. Гідравлічний розрахунок теплових мереж
- 3.8. П’єзометричний графік
- 3.9. Основні вимоги до режиму тисків у водяних теплових мережах
- 3.10. Режим одержування теплоти від тец