5.3 Розрахунок настроювань регуляторів
При визначенні настроювань регуляторів показником оптимальності системи регулювання звичайно беруть інтегральний критерій якості при дії на об'єкт найсильнішого збурення з урахуванням додаткового обмеження на запас стійкості системи. У практичних розрахунках запас стійкості зручно характеризувати показником коливальності системи.
Під оптимальними розуміють настроювання регуляторів, які забезпечують заданий ступінь коливальності т процесу регулювання при мінімумі інтегрального квадратичного критерію.
Серед інженерних методів розрахунку настроювань регуляторів найпоширенішими є експериментальні за кривими розгону, метод незагасаючих коливань (метод Нікольса - Ціглера) і метод розширених частотних характеристик (РЧХ).
y
K0X
t
0
τ T0
Рис. 5.3. Крива розгону об’єкта
У цьому разі об’єкт ідентифікується першим порядком, який має сталу часу T0,
час чистого запізнення τ і коефіцієнт передачі по досліджуваному каналу К0. Причому дослідження виконують за всіма ймовірними каналами регулювання і вибирають той, який має найбільший коефіцієнт передачі. Оптимальні настроювання регулятора (ОНР) знаходять за такими формулами:
коефіцієнт підсилення регулятора ;
час інтегрування Ті =2τ;
час диференціювання
Метод за швидкістю перехідного процесу не потребує визначення сталої часу об’єкта. На кривій розгону (див. рис. 5.4.) міститься точка максимальної динамічної чутливості і на дотичній до цієї точки будується прямокутний трикутник.
y
Δt
а
Δy
0 t
τ
Рис. 5.4. Крива розгону об’єкта
Використовуючи і час запізнення τ, визначають параметри настроювання регулятора за формулами, наведеними в таблиці.
Таблиця 5.1
Параметри настроювань регуляторів
Регулятор | Оптимальні настроювання | ||
К | Т |
| |
П |
| - | - |
ПІ | 1,2 | 2τ | - |
ПІД | 0,83 | 2τ |
|
Метод незгасаючих коливань. Як відомо автоматична система регулювання розміщується на межі стійкості, тобто має коливання вихідного з однаковими амплітудою і частотою, якщо характеристичне рівняння такої системи дорівнює нулю. Отже, для одноконтурної АСР маємо
/5.4/
або
/5.5/
Рівняння /5.4. / виконується тоді, коли
/5.6/
Вважатимемо, що регулятор грунтується на П-законі регулювання, передаточна функція якого
/5.7/
з урахуванням /5.7./ система рівнянь /5.6./набуває такого вигляду
; /5.8/
/5.9/
Із рівняння /5.9./ знаходимо критичну частоту коливань . Підставивши цю частоту в рівняння АЧХ, дістанемо критичний коефіцієнт підсилення регулятора Kpкр. За ωкр і Kpкр розраховують ОНР за формулами, наведеними в табл. 5.2.
Таблиця 5.2
Регулятор | Оптимальні настроювання | ||
Kp | Ti | Tд | |
П | 0,5Kpкр | - | - |
ПІ | 0,45 Kpкр | 11,63/ Kpкр ωкр | - |
ПІД | 0,6 Kpкр | 5,21/Kpкр ωкр | 0,47Kpкр/ ωкр |
Розраховані за табл. 5.2 настроювання регулятора забезпечують ступінь загасання ψ0,8…0,9.
Зазначимо, що фазочастотну характеристику (ФЧХ) еквівалентного об’єкта керування (для визначення ωкр) доцільно подавати у вигляді
во(ω)=- ωτ3+2(ω)+ 3(ω)+ 4(ω)+ 5(ω) /5.10/
У цьому разі навіть при τ3=0 завжди можна визначити критичну частоту ωкр.
Контрольні запитання:
З чого починають побудовуа АСР?
Що являє собою статична характеристика об’єкта?
Як здійснюється вибір закону регулювання регулятора?
Що розуміють під оптимальними настроювання регуляторів?
Які є методи розрахунку настроювань регуляторів?
Який найзручніший із методів розрахунку і за якими формулами здійснюється розрахунок?
- Технічний коледж
- 1. Опис предмета навчальної дисципліни
- Характеристика предмета навчальної дисципліни
- 2. Зміст дисципліни
- 2.1. Лекційні заняття
- 3. Структура залікового кредиту дисципліни
- 4. Практичні заняття
- 5. Лабораторні заняття
- 1.1 Поняття про автоматику та автоматизацію
- Основні етапи розвитку автоматики
- 1.2 Основні поняття про автоматизацію керування виробництвом та технологічними процесами. Засоби та методи керування виробництвом
- 1.3 Класифікація технологічних процесів
- 1.4 Види параметрів керування.
- 1.5 Вимоги до об’єктів керування
- 1.6 Види і рівні автоматизації
- 1.7 Економічні аспекти автоматизації
- Класифікація засобів автоматизації
- 2.2 Основні функції автоматизації
- 2.3 Класифікація систем автоматизації
- 3.1 Розрахунок одноконтурних систем регулювання
- 3.2 Аср стабілізації витрат матеріальних і енергетичних потоків
- 3.3 Аср стабілізації рівня рідини в ємності
- 3.4 Аср стабілізації тиску газу в резервуарі
- Аср стабілізації температури теплообмінника
- Аср стабілізації концентрації речовин
- Тема №4 багатоконтурні системи регулювання
- 4.1 Комбіновані аср
- 4.1.1 Умови інваріантності
- 4.1.2 Умови фізичної реалізованості інваріантних аср
- 4.1.3 Технічна реалізація інваріантних аср
- 4.2 Каскадні системи регулювання
- 4.3 Системи регулювання з додатковим імпульсом за похідною з проміжної точки
- 4.4 Взаємопов’язані системи регулювання
- 4.4.1 Аср непов’язаного регулювання
- 4.4.2 Аср пов’язаного регулювання
- 4.5 Системи регулювання співвідношення потоків
- 4.6 Адаптивні та екстримальні системи регулювання
- 4.6.1 Адаптивні системи регулювання (аср)
- 4.6.2 Системи екстремального регулювання (еср)
- Тема №5 синтез систем регулювання
- 5.1 Вибір структури й оцінка параметрів систем регулювання
- 5.2 Вибір закону регулювання регулятора
- 5.3 Розрахунок настроювань регуляторів
- Автоматизаціія типових технологічних процесів Тема №6 автоматизація теплових процесів
- 6.1 Автоматизація теплових процесів
- 6.1.1 Автоматизація теплообмінників
- 6.1.2 Одноконтурне регулювання.
- 6.1.3 Каскадне регулювання.
- 6.1.4 Комбіноване регулювання.
- 6.2 Автоматизація печей і топок
- 6.3 Автоматизація процесів випарювання
- 6.4 Автоматизація процесу кристалізації
- Основні принципи керування процесом кристалізації
- 6.4.2 Регулювання концентрації кристалів в суспензії
- 6.4.3 Регулювання кристалізатора з мішалкою
- 6.4.4 Регулювання кристалізатора випарного типу
- Тема №7 автоматизація масообмінних процесів
- 7.1 Автоматизація процесів ректифікації
- 7.1.1 Одноконтурного регулювання ректифікаційною колоною
- 7.1.2 Регулювання концентрацією цільового продукту в кубовій рідині
- 7.1.3 Регулювання концентрацією в кубі колони за різницею температур кипіння свіжого розчину та еталонної рідини
- 7.1.4 Регулювання процесом ректифікації за допомогою систем співвідношення
- 7.1.5 Перехресне регулювання температури та рівня в кубовій частині колони
- 7.1.6 Регулювання концентрації основної речовини в закріплюючій частині колони
- 7.1.7 Регулювання тиску в колоні
- 7.1.8 Регулювання ентальпії свіжого розчину
- 7.1.9 Регулювання процесу відбору проміжної фракції
- 7.1.10 Автоматичний контроль, сигналізація та системи захисту
- 7.2 Автоматизація процесів абсорбції
- 7.3 Автоматизація процесів адсорбції
- 7.4 Автоматизація процесів сушіння
- 7.4.1 Регулювання барабанного прямоточного сушильного агрегату
- 7.4.2 Регулювання протиточного сушильного апарата
- Тема №8 автоматизація механічних процесів
- 8.1 Автоматизація транспортування твердих матеріалів
- 8.1.1 Загальні відомості. Типова схема автоматизації
- 8.1.2 Цілі керування процесом транспортування
- 8.1.3 Внесення регулюючих впливів шляхом зміни швидкості транспортера
- 8.1.4 Системи автоматичного керування транспортерами
- 8.2 Автоматизація процесів подрібнення твердих матеріалів.
- 8.2.1 Загальні відомості
- 8.2.2 Регулювання барабанних млинів мокрого помолу
- 8.2.3 Регулювання об’єму матеріалу шляхом зміни витрати сировини
- 8.2.4 Регулювання млинів, які працюють по замкненому циклу
- 8.2.5 Регулювання щокових подрібнювачів
- 8.3 Автоматизація процесів дозування та змішування твердих матеріалів
- 8.3.1 Загальні відомості. Фізичні основи процесу
- 8.3.2 Регулювання дозатора з стрічковим транспортером та регуляторами прямої дії
- 8.3.3 Регулювання дозатора з стрічковим транспортером за допомогою двоконтурної системи
- 8.3.4 Регулювання дозаторів з розділеним потоком дозує мого матеріалу
- Тема №9 автоматизація гідромеханічних процесів
- 9.1 Автоматизація реакторів. Автоматизація процесу змішування рідин
- 9.1.1 Загальні відомості
- 9.1.2 Регулювання реакторів безперервної дії.
- 9.1.3 Регулювання реакторів напівбезперервної дії
- 9.1.4 Регулювання реакторів періодичної дії
- 9.1.5 Регулювання трубчастими реакторами
- 9.2 Автоматизація процесів переміщення рідин
- 9.2.1 Типове рішення автоматизації
- 9.2.2 Регулювання при різних цілях управління
- 9.2.3 Регулювання методом дроселювання потоку в байпасному трубопроводі
- 9.2.4 Регулювання зміною числа обертів валу насоса
- 9.3 Автоматизація процесів відстоювання
- 9.3.2 Регулювання зміни витрати суспензії
- 9.3.3 Регулювання густини згущеної суспензії
- 9.3.4 Регулювання подачі коагулянту
- 9.3.5 Регулювання режиму роботи гребкового механізму
- 9.3.6 Управління процесом протиточного відстоювання
- 9.3.7 Управління відстійником періодичної дії
- 9.4 Автоматизація процесів фільтрування
- 9.4.1 Автоматизація процесу фільтрування рідких неоднорідних систем
- 9.4.2 Регулювання товщини осаду
- 9.4.3 Управління фільтрувальними відділами
- 9.4.4 Фільтрування газових систем
- 9.4.5 Регулювання по чіткій часовій програмі
- 9.5 Автоматизація процесу центрифугування рідких систем
- 9.5.1 Типове рішення автоматизації
- 9.5.2 Регулювання відстійних центрифуг
- 9.5.3 Управління центрифугами періодичної дії
- 9.5.4 Регулювання швидкості обертання центрифуг періодичної дії
- 9.6 Автоматизація процесів очистки газів
- 9.6.1 Мокра очистка газів
- 9.6.2 Електрична очистка газів
- 9.7 Автоматизація процесів очистки стічних вод
- 9.7.1 Загальні відомості
- 9.7.2 Біохімічна очистка.
- Практична робота №1
- Теоретичні відомості
- Практичне заняття
- Практичне заняття
- Розподіл балів, що присвоюються студентам.
- Питання винесені на іспит
- Література.