4.6.2 Системи екстремального регулювання (еср)
Системою екстремального керування називається система, в якій автоматично відшукується та підтримується режим роботи, що характеризується максимально (мінімально) можливим значенням показника якості. Цей показник називається також показником екстремуму або цільовою функцією. В загально випадку в процесі екстримального керування визначається екстремум статичної характеристики нелінійного нестаціонарного інерційного об'єкта, на який діють збурення, що змінюють положення екстремуму в просторі керуючих дій.
Якщо статична характеристика об'єкта має екстремум:
I=f(U1,U2,…Um), /4.36/
де І-показник екстремуму, ui-керуючі параметри, то система екстримального керування має виводити й утримувати робочу точку в екстремумі.
а б
Рис. 4.15 Статична характеристика об’єкта: а) значення керуючого параметра U=U´ при якому досягається екстремум є фіксованим; б) координати екстремуму змінюються у часі.
Об'єкти екстримального керування можна класифікувати за такими ознаками:
Кількість керуючих (оптимізуючи) параметрів;
Кількість екстремумів характеристики об'єкта;
Обсяг інформації про об'єкт;
Інерційність об'єкта.
Якщо в об’єкті всього один керуючий параметр (m=1) та об’єкт називається однопараметричним; якщо m>1 то об'єкт багатопараметричний.
В найпростішому випадку об’єкт екстремального клерування є однопараметричним, одно екстремальним а його статична характеристика (рис.1) безперервно-диференційованою функцією. Головним у системах екстремального керування є відслідковування дрейфу екстремуму статичної характеристики об’єкту, тому екстремальні системи часто називають санастроювальними системами.
Прикладом екстремального об’єкту може бути котел теплових електричних станцій. В топку котла подається повітря кількість якого дещо перевищує ту кількість яка теоретично необхідна для повного згорання палива. Відношення цих кількостей називається коефіцієнтом надлишку повітря н. Правильність вибору цього коефіцієнту визначає економічність використання палива. Основним збуренням для котла є змінювання споживання пари. Залежність ККД котла від коефіцієнта надлишку повітря н мають екстремуми для різних витрат пари F (рис. 4.16). Завданням систем екстремального керування є зміна подачі повітря в топку таким чином щоб ККД котла мав би максимально можливе в даних умовах значення.
Рис. 4.16. Залежність ККД котла від
коефіцієнта надлишку повітря н.
Є різні методи (принципи) пошуків екстремумів, такі як : метод вимірювання похідної, метод градієнта, метод найбільш швидкого спуску, метод випадкових пошуків, метод Гаусса –Зейделля, та інші.
Якщо значення керуючого параметра U=U’, при якому досягається екстремум є фіксованим, тобто відбувається лише вертикальний дрейф статичної характеристики, або знаходиться за заздалегідь відомим законом, то можна застосовувати систему стабілізації, або систему програмного керування.
Якщо крім вертикального дрейфу відбувається і горизонтальний, причому закон цього дрейфу заздалегідь невідомий, то системи стабілізації, або програмного керування не можуть забезпечити автоматичне утримання екстремуму. В цьому випадку слід застосовувати систему екстремального керування. Ця система забезпечує такі зміни керуючого параметра, при яких відбувається рух системи до екстремуму і утримання її в точці екстремуму.
Метод вимірювання похідної
Цей метод ґрунтується на тому, що похідна dI/dU змінює свій знак під час проходження через екстремум. Напрямок руху до екстремуму визначається знаком похідної, а ознакою наявності екстремуму є те що похідна дорівнює нулю.
Для визначення похідної dI/dU використовуються похідні dI/dt і dU/dt, а потім ділиться одна на іншу.
Функціональна схема, яка реалізує метод, коли екстремум забезпечується, шляхом руху об’єкта керування в бік екстремуму показано на рис. 4.17.
Рис. 4.17 Функціональна схема
Вона складається з двох диференціаторів, блока ділення, що визначає похідну dI/dU і релейного елемента РЕ, що дає знак похідної. Залежно від знака похідної виконавчий механізм ВМ, забезпечує рух об’єкта керування в бік екстремуму. Під час проходження через екстремум знак похідної змінюється, релейний елемент РЕ перемикається і ВМ реверсується, що забезпечує повернення системи до точки екстремуму.
Контрольні запитання:
1. При автоматизації яких об'єктів використовують комбіновані системи регулювання?
2. Принцип інваріантності. Суть цього принципу.
3. Умови фізичної реалізованості інваріантних АСР.
4. В яких випадках фізично неможливо реалізувати «ідеальні» компенсатори?
5. Технічна реалізація інваріантних АСР.
6. Якими елементарними ланками представляють компенсатори?
7. У чому полягає головна перевага каскадного регулювання?
9. Який закон регулювання слід використовувати для допоміжного та основного регулятора при каскадному регулюванні?
10. Яким чином здійснюється розрахунок каскадних АСР?
11. Принцип побудови систем регулювання з додатковим імпульсом за похідною з проміжної точки.
12. Що необхідно для забезпечення регулювання без статичної похибки у системах з додатковим імпульсом за похідною з проміжної точки?
13. Яким чином здійснюється розрахунок АСР із додатковим імпульсом за похідною?
14. Які існують підходи до автоматизації багатопов’язаних об’єктів?
15. Яким чином розраховують АСР, при непов’язаному регулюванні, якщо враховують лише основні канали регулювання?
16. Принцип АСР пов’язаного та непов’язаного регулювання.
17. Яку АСР застосовуєть для регулювання співвідношення матеріальних, або енергетичних потоків?
18. Які АСР називається ще самонастроювальними?
19. Які системи, здатні в процесі виконання основної задачі керування за рахунок змінювання параметрів і структури регулятора поповнювати нестачу інформації про об’єкт керування?
20. За якими ознаками можна класифікувати об'єкти екстримального керування?
- Технічний коледж
- 1. Опис предмета навчальної дисципліни
- Характеристика предмета навчальної дисципліни
- 2. Зміст дисципліни
- 2.1. Лекційні заняття
- 3. Структура залікового кредиту дисципліни
- 4. Практичні заняття
- 5. Лабораторні заняття
- 1.1 Поняття про автоматику та автоматизацію
- Основні етапи розвитку автоматики
- 1.2 Основні поняття про автоматизацію керування виробництвом та технологічними процесами. Засоби та методи керування виробництвом
- 1.3 Класифікація технологічних процесів
- 1.4 Види параметрів керування.
- 1.5 Вимоги до об’єктів керування
- 1.6 Види і рівні автоматизації
- 1.7 Економічні аспекти автоматизації
- Класифікація засобів автоматизації
- 2.2 Основні функції автоматизації
- 2.3 Класифікація систем автоматизації
- 3.1 Розрахунок одноконтурних систем регулювання
- 3.2 Аср стабілізації витрат матеріальних і енергетичних потоків
- 3.3 Аср стабілізації рівня рідини в ємності
- 3.4 Аср стабілізації тиску газу в резервуарі
- Аср стабілізації температури теплообмінника
- Аср стабілізації концентрації речовин
- Тема №4 багатоконтурні системи регулювання
- 4.1 Комбіновані аср
- 4.1.1 Умови інваріантності
- 4.1.2 Умови фізичної реалізованості інваріантних аср
- 4.1.3 Технічна реалізація інваріантних аср
- 4.2 Каскадні системи регулювання
- 4.3 Системи регулювання з додатковим імпульсом за похідною з проміжної точки
- 4.4 Взаємопов’язані системи регулювання
- 4.4.1 Аср непов’язаного регулювання
- 4.4.2 Аср пов’язаного регулювання
- 4.5 Системи регулювання співвідношення потоків
- 4.6 Адаптивні та екстримальні системи регулювання
- 4.6.1 Адаптивні системи регулювання (аср)
- 4.6.2 Системи екстремального регулювання (еср)
- Тема №5 синтез систем регулювання
- 5.1 Вибір структури й оцінка параметрів систем регулювання
- 5.2 Вибір закону регулювання регулятора
- 5.3 Розрахунок настроювань регуляторів
- Автоматизаціія типових технологічних процесів Тема №6 автоматизація теплових процесів
- 6.1 Автоматизація теплових процесів
- 6.1.1 Автоматизація теплообмінників
- 6.1.2 Одноконтурне регулювання.
- 6.1.3 Каскадне регулювання.
- 6.1.4 Комбіноване регулювання.
- 6.2 Автоматизація печей і топок
- 6.3 Автоматизація процесів випарювання
- 6.4 Автоматизація процесу кристалізації
- Основні принципи керування процесом кристалізації
- 6.4.2 Регулювання концентрації кристалів в суспензії
- 6.4.3 Регулювання кристалізатора з мішалкою
- 6.4.4 Регулювання кристалізатора випарного типу
- Тема №7 автоматизація масообмінних процесів
- 7.1 Автоматизація процесів ректифікації
- 7.1.1 Одноконтурного регулювання ректифікаційною колоною
- 7.1.2 Регулювання концентрацією цільового продукту в кубовій рідині
- 7.1.3 Регулювання концентрацією в кубі колони за різницею температур кипіння свіжого розчину та еталонної рідини
- 7.1.4 Регулювання процесом ректифікації за допомогою систем співвідношення
- 7.1.5 Перехресне регулювання температури та рівня в кубовій частині колони
- 7.1.6 Регулювання концентрації основної речовини в закріплюючій частині колони
- 7.1.7 Регулювання тиску в колоні
- 7.1.8 Регулювання ентальпії свіжого розчину
- 7.1.9 Регулювання процесу відбору проміжної фракції
- 7.1.10 Автоматичний контроль, сигналізація та системи захисту
- 7.2 Автоматизація процесів абсорбції
- 7.3 Автоматизація процесів адсорбції
- 7.4 Автоматизація процесів сушіння
- 7.4.1 Регулювання барабанного прямоточного сушильного агрегату
- 7.4.2 Регулювання протиточного сушильного апарата
- Тема №8 автоматизація механічних процесів
- 8.1 Автоматизація транспортування твердих матеріалів
- 8.1.1 Загальні відомості. Типова схема автоматизації
- 8.1.2 Цілі керування процесом транспортування
- 8.1.3 Внесення регулюючих впливів шляхом зміни швидкості транспортера
- 8.1.4 Системи автоматичного керування транспортерами
- 8.2 Автоматизація процесів подрібнення твердих матеріалів.
- 8.2.1 Загальні відомості
- 8.2.2 Регулювання барабанних млинів мокрого помолу
- 8.2.3 Регулювання об’єму матеріалу шляхом зміни витрати сировини
- 8.2.4 Регулювання млинів, які працюють по замкненому циклу
- 8.2.5 Регулювання щокових подрібнювачів
- 8.3 Автоматизація процесів дозування та змішування твердих матеріалів
- 8.3.1 Загальні відомості. Фізичні основи процесу
- 8.3.2 Регулювання дозатора з стрічковим транспортером та регуляторами прямої дії
- 8.3.3 Регулювання дозатора з стрічковим транспортером за допомогою двоконтурної системи
- 8.3.4 Регулювання дозаторів з розділеним потоком дозує мого матеріалу
- Тема №9 автоматизація гідромеханічних процесів
- 9.1 Автоматизація реакторів. Автоматизація процесу змішування рідин
- 9.1.1 Загальні відомості
- 9.1.2 Регулювання реакторів безперервної дії.
- 9.1.3 Регулювання реакторів напівбезперервної дії
- 9.1.4 Регулювання реакторів періодичної дії
- 9.1.5 Регулювання трубчастими реакторами
- 9.2 Автоматизація процесів переміщення рідин
- 9.2.1 Типове рішення автоматизації
- 9.2.2 Регулювання при різних цілях управління
- 9.2.3 Регулювання методом дроселювання потоку в байпасному трубопроводі
- 9.2.4 Регулювання зміною числа обертів валу насоса
- 9.3 Автоматизація процесів відстоювання
- 9.3.2 Регулювання зміни витрати суспензії
- 9.3.3 Регулювання густини згущеної суспензії
- 9.3.4 Регулювання подачі коагулянту
- 9.3.5 Регулювання режиму роботи гребкового механізму
- 9.3.6 Управління процесом протиточного відстоювання
- 9.3.7 Управління відстійником періодичної дії
- 9.4 Автоматизація процесів фільтрування
- 9.4.1 Автоматизація процесу фільтрування рідких неоднорідних систем
- 9.4.2 Регулювання товщини осаду
- 9.4.3 Управління фільтрувальними відділами
- 9.4.4 Фільтрування газових систем
- 9.4.5 Регулювання по чіткій часовій програмі
- 9.5 Автоматизація процесу центрифугування рідких систем
- 9.5.1 Типове рішення автоматизації
- 9.5.2 Регулювання відстійних центрифуг
- 9.5.3 Управління центрифугами періодичної дії
- 9.5.4 Регулювання швидкості обертання центрифуг періодичної дії
- 9.6 Автоматизація процесів очистки газів
- 9.6.1 Мокра очистка газів
- 9.6.2 Електрична очистка газів
- 9.7 Автоматизація процесів очистки стічних вод
- 9.7.1 Загальні відомості
- 9.7.2 Біохімічна очистка.
- Практична робота №1
- Теоретичні відомості
- Практичне заняття
- Практичне заняття
- Розподіл балів, що присвоюються студентам.
- Питання винесені на іспит
- Література.