6.1 Автоматизація теплових процесів
Автоматизація технологічного процесу – це сукупність АСР контролю, сигналізації та блокування, напрямлені на забезпечення мети керування – високоефективної роботи технологічного об’єкта. Ефективність роботи оцінюється показниками (критеріями), які характеризують функціонування об’єкта керування в цілому залежно від керуючих і збурюючи впливів. Показниками ефективності можуть бути мінімальний критерій якості перехідного процесу, мінімальні величини енергозатрат на одиницю готового продукту, мінімальна собівартість продукції, максимальний прибуток, максимальна продуктивність, максимальний вихід цільового продукту для масообмін них і хімічних процесів та інше.
Метою керування стабілізуючої системи є підтримання на постійному рівні з необхідною точністю того чи іншого технологічного параметра. Стабілізуючі АСР використовують, як правило, для автоматизації простих допоміжних процесів з огляду на ефективність основного процесу, наприклад, АСР стабілізації витрат, температури на виході теплообмінників, рівня рідини, тиску газів.
Досягти ефективності роботи технологічного об’єкта за всіма показниками одночасно за допомогою стабілізуючих АСР досить важко, а іноді неможливо через велику кількість факторів, які впливають на хід процесу. Тому весь процес поділяють на окремі ділянки, які характеризуються порівняно невеликою кількістю змінних параметрів. Звичайно ці ділянки збігаються із закінченими технологічними стадіями, для яких формуються свої задачі, що входять у загальну задачу керування процесом у цілому.
Задачі керування окремим стадіями звичайно напрямлені на оптимізацію технологічного параметра або критерію керування, який легко розраховувати за відомими режимними параметрами.
Оптимізуючі системи керування підтримують той або інший технологічний параметр або критерій не на попередньо заданому рівні, а на екстремальному для даної ситуації значенні при додержанні обмежуючих умов. Останні зумовлені тим, що критерій оптимальності характеризує процес лише з одного, але найважливішого боку (наприклад, продуктивність має бути не нижчою, а собівартість не вищою за задані регламентом).
Розробку систем автоматизації починають з вибору параметрів, які беруть участь у керуванні. До них належать контролюючі, регулюючі та сигналізуючі величини, в також параметри, зміною яких вносяться регулюючі впливи. Вибирають способи здійснення захисту та блокування, а потім конкретні автоматичні пристрої автоматичних систем. Істотне значення має мінімізація кількості параметрів керування.
Основними автоматичними пристроями, які визначають технологічний режим процесу, є регулятори. Тому спочатку доцільно відібрати параметри, які необхідно регулювати, та канали внесення регулюючих впливів і лише після цього починати вибір інших параметрів.
Вибрати параметри технологічного процесу, які необхідно регулювати і зміною яких доцільно вносити регулюючі впливи, можна, лише досконально вивчивши цей процес. При цьому визначають цільове призначення процесу, взаємозв'язок його з іншими процесами виробництва, вибирають показник ефективності та знаходять статичні і динамічні моделі технологічних об'єктів. Далі аналізують імовірність надходження на об'єкт збурюючих впливів і можливість їх усунення перш ніж вони вплинуть на регульований параметр. Особливу увагу слід звертати на стабілізацію вхідних параметрів, оскільки з їх зміною до об'єкта надходять найсильніші збурення.
Як правило, не всі збурюючі фактори вдається ліквідувати до надходження їх до об'єкта керування. Дуже важливо передбачити і в разі появи усунути внутрішні збурюючі фактори. Крім того, не всі вхідні координати можна стабілізувати, оскільки більшість із них визначається технологічним режимом попереднього або наступного процесу.
Вибір регулюючих і регульованих величин та каналів регулювання грунтується на використанні статичних і динамічних характеристик об'єкта. За статичними характеристиками можна оцінити ступінь впливу одних параметрів на інші. Динамічні характеристики сприяють вибору каналів, за якими регулюючий вплив є найефективнішим.
Як відомо, більшість апаратів хімічної технології є багатопов'язаними об'єктами з двома і більше взаємопов'язаними регульованими координатами. У таких об'єктах регулюючі впливи, напрямлені на усунення відхилення однієї регульованої координати, впливають на інші. У таких випадках необхідно вживати заходів для ослаблення внутрішніх зв'язків або вводити компенсуючі пристрої для усунення зовнішніх зв'язків між регуляторами.
Вибираючи контрольні параметри, необхідно керуватися тим, щоб при мінімальній їх кількості забезпечувався найповніший обсяг інформації про процес.
Контролю підлягають насамперед параметри, знати які необхідно для виконання пускових робіт, налагодження та проведення технологічного процесу. До таких параметрів належать усі регульовані параметри, нерегульовані режимні параметри та вхідні координати, у разі зміни яких до об'єкта можуть надходити збурюючі величини.
Для оперативного керування технологічним процесом необхідно контролювати найважливіші вихідні параметри процесу. Щоб одержати дані, потрібні для госпрозрахункових і техніко-економічних показників, необхідно контролювати кількість витраченої електроенергії, палива, тепло-, холодоносія та інших енергетичних і матеріальних витрат.
Параметри сигналізації починають вибирати після аналізу об'єкта щодо його вибухо- та пожежонебезпечності, а також токсичності й агресивності перероблюваних речовин.
Сигналізації підлягають всі параметри, які можуть призвести до аварії або істотно порушити технологічний режим. До основних параметрів, які підлягають сигналізації, належать концентрації вибухонебезпечної речовини в повітрі виробничого приміщення, рівень рідини, тиск, температура в апаратах та ін.
Необхідно сигналізувати головні параметри регулювання в багатоконтурних АСР, зупинення обладнання, не передбачене технологічним регламентом, граничні значення параметрів, які контролюються з метою оперативного керування.
Крім того, необхідно сигналізувати відхилення найвідповідальніших режимних параметрів і показника ефективності, а також припинення подавання продуктів, теплоносіїв тощо.
Якщо в ході проведення технологічного процесу виникають вибухо- та аварійно-небезпечні ситуації, то слід передбачити відповідний захист. Параметри такого захисту вибирають залежно від того, що може бути причиною аварії. Якщо причина аварії - концентрація вибухонебезпечної речовини, то вона буде параметром захисту. Якщо ця концентрація підвищується до небезпечного рівня, то пристрої захисту мають виконувати при цьому відповідні операції (припинення подавання того чи іншого потоку, вмикання лінії подавання інертного газу та ін.).
Небезпека вибуху або аварії може виникнути і в разі припинення подавання однієї з речовин у технологічний апарат, наприклад, припинення подавання холодоносія в реактор, в якому виділяється теплота реакції. При цьому пристрої захисту мають повністю відімкнути всі потоки від об’єкта.
Схеми та пристрої автоматичного блокування попереджають неправильні запускання та зупинення апаратів і машин, а також виключають можливість виконання наступних операцій, якщо не виконана хоча б одна із попередніх.
- Технічний коледж
- 1. Опис предмета навчальної дисципліни
- Характеристика предмета навчальної дисципліни
- 2. Зміст дисципліни
- 2.1. Лекційні заняття
- 3. Структура залікового кредиту дисципліни
- 4. Практичні заняття
- 5. Лабораторні заняття
- 1.1 Поняття про автоматику та автоматизацію
- Основні етапи розвитку автоматики
- 1.2 Основні поняття про автоматизацію керування виробництвом та технологічними процесами. Засоби та методи керування виробництвом
- 1.3 Класифікація технологічних процесів
- 1.4 Види параметрів керування.
- 1.5 Вимоги до об’єктів керування
- 1.6 Види і рівні автоматизації
- 1.7 Економічні аспекти автоматизації
- Класифікація засобів автоматизації
- 2.2 Основні функції автоматизації
- 2.3 Класифікація систем автоматизації
- 3.1 Розрахунок одноконтурних систем регулювання
- 3.2 Аср стабілізації витрат матеріальних і енергетичних потоків
- 3.3 Аср стабілізації рівня рідини в ємності
- 3.4 Аср стабілізації тиску газу в резервуарі
- Аср стабілізації температури теплообмінника
- Аср стабілізації концентрації речовин
- Тема №4 багатоконтурні системи регулювання
- 4.1 Комбіновані аср
- 4.1.1 Умови інваріантності
- 4.1.2 Умови фізичної реалізованості інваріантних аср
- 4.1.3 Технічна реалізація інваріантних аср
- 4.2 Каскадні системи регулювання
- 4.3 Системи регулювання з додатковим імпульсом за похідною з проміжної точки
- 4.4 Взаємопов’язані системи регулювання
- 4.4.1 Аср непов’язаного регулювання
- 4.4.2 Аср пов’язаного регулювання
- 4.5 Системи регулювання співвідношення потоків
- 4.6 Адаптивні та екстримальні системи регулювання
- 4.6.1 Адаптивні системи регулювання (аср)
- 4.6.2 Системи екстремального регулювання (еср)
- Тема №5 синтез систем регулювання
- 5.1 Вибір структури й оцінка параметрів систем регулювання
- 5.2 Вибір закону регулювання регулятора
- 5.3 Розрахунок настроювань регуляторів
- Автоматизаціія типових технологічних процесів Тема №6 автоматизація теплових процесів
- 6.1 Автоматизація теплових процесів
- 6.1.1 Автоматизація теплообмінників
- 6.1.2 Одноконтурне регулювання.
- 6.1.3 Каскадне регулювання.
- 6.1.4 Комбіноване регулювання.
- 6.2 Автоматизація печей і топок
- 6.3 Автоматизація процесів випарювання
- 6.4 Автоматизація процесу кристалізації
- Основні принципи керування процесом кристалізації
- 6.4.2 Регулювання концентрації кристалів в суспензії
- 6.4.3 Регулювання кристалізатора з мішалкою
- 6.4.4 Регулювання кристалізатора випарного типу
- Тема №7 автоматизація масообмінних процесів
- 7.1 Автоматизація процесів ректифікації
- 7.1.1 Одноконтурного регулювання ректифікаційною колоною
- 7.1.2 Регулювання концентрацією цільового продукту в кубовій рідині
- 7.1.3 Регулювання концентрацією в кубі колони за різницею температур кипіння свіжого розчину та еталонної рідини
- 7.1.4 Регулювання процесом ректифікації за допомогою систем співвідношення
- 7.1.5 Перехресне регулювання температури та рівня в кубовій частині колони
- 7.1.6 Регулювання концентрації основної речовини в закріплюючій частині колони
- 7.1.7 Регулювання тиску в колоні
- 7.1.8 Регулювання ентальпії свіжого розчину
- 7.1.9 Регулювання процесу відбору проміжної фракції
- 7.1.10 Автоматичний контроль, сигналізація та системи захисту
- 7.2 Автоматизація процесів абсорбції
- 7.3 Автоматизація процесів адсорбції
- 7.4 Автоматизація процесів сушіння
- 7.4.1 Регулювання барабанного прямоточного сушильного агрегату
- 7.4.2 Регулювання протиточного сушильного апарата
- Тема №8 автоматизація механічних процесів
- 8.1 Автоматизація транспортування твердих матеріалів
- 8.1.1 Загальні відомості. Типова схема автоматизації
- 8.1.2 Цілі керування процесом транспортування
- 8.1.3 Внесення регулюючих впливів шляхом зміни швидкості транспортера
- 8.1.4 Системи автоматичного керування транспортерами
- 8.2 Автоматизація процесів подрібнення твердих матеріалів.
- 8.2.1 Загальні відомості
- 8.2.2 Регулювання барабанних млинів мокрого помолу
- 8.2.3 Регулювання об’єму матеріалу шляхом зміни витрати сировини
- 8.2.4 Регулювання млинів, які працюють по замкненому циклу
- 8.2.5 Регулювання щокових подрібнювачів
- 8.3 Автоматизація процесів дозування та змішування твердих матеріалів
- 8.3.1 Загальні відомості. Фізичні основи процесу
- 8.3.2 Регулювання дозатора з стрічковим транспортером та регуляторами прямої дії
- 8.3.3 Регулювання дозатора з стрічковим транспортером за допомогою двоконтурної системи
- 8.3.4 Регулювання дозаторів з розділеним потоком дозує мого матеріалу
- Тема №9 автоматизація гідромеханічних процесів
- 9.1 Автоматизація реакторів. Автоматизація процесу змішування рідин
- 9.1.1 Загальні відомості
- 9.1.2 Регулювання реакторів безперервної дії.
- 9.1.3 Регулювання реакторів напівбезперервної дії
- 9.1.4 Регулювання реакторів періодичної дії
- 9.1.5 Регулювання трубчастими реакторами
- 9.2 Автоматизація процесів переміщення рідин
- 9.2.1 Типове рішення автоматизації
- 9.2.2 Регулювання при різних цілях управління
- 9.2.3 Регулювання методом дроселювання потоку в байпасному трубопроводі
- 9.2.4 Регулювання зміною числа обертів валу насоса
- 9.3 Автоматизація процесів відстоювання
- 9.3.2 Регулювання зміни витрати суспензії
- 9.3.3 Регулювання густини згущеної суспензії
- 9.3.4 Регулювання подачі коагулянту
- 9.3.5 Регулювання режиму роботи гребкового механізму
- 9.3.6 Управління процесом протиточного відстоювання
- 9.3.7 Управління відстійником періодичної дії
- 9.4 Автоматизація процесів фільтрування
- 9.4.1 Автоматизація процесу фільтрування рідких неоднорідних систем
- 9.4.2 Регулювання товщини осаду
- 9.4.3 Управління фільтрувальними відділами
- 9.4.4 Фільтрування газових систем
- 9.4.5 Регулювання по чіткій часовій програмі
- 9.5 Автоматизація процесу центрифугування рідких систем
- 9.5.1 Типове рішення автоматизації
- 9.5.2 Регулювання відстійних центрифуг
- 9.5.3 Управління центрифугами періодичної дії
- 9.5.4 Регулювання швидкості обертання центрифуг періодичної дії
- 9.6 Автоматизація процесів очистки газів
- 9.6.1 Мокра очистка газів
- 9.6.2 Електрична очистка газів
- 9.7 Автоматизація процесів очистки стічних вод
- 9.7.1 Загальні відомості
- 9.7.2 Біохімічна очистка.
- Практична робота №1
- Теоретичні відомості
- Практичне заняття
- Практичне заняття
- Розподіл балів, що присвоюються студентам.
- Питання винесені на іспит
- Література.