3.3.7. Устройство ректификационных аппаратов
Для проведения процессов ректификации применяются аппараты разнообразных конструкций, основные типы которых не отличаются от соответствующих типов абсорберов.
В ректификационных установках используют главным образом аппараты двух типов: насадочные и тарельчатые ректификационные колонны. Кроме того, для ректификации под вакуумом применяют пленочные и роторные колонны различных конструкций.
Насадочные, барботажные, а также некоторые пленочные колонны по конструкции внутренних устройств (тарелок, насадочных тел и т.д.) аналогичны абсорбционным колоннам. Однако в отличие от абсорберов ректификационные колонны снабжены теплообменными устройствами — кипятильником (кубом) и дефлегматором. Кроме того, для уменьшения потерь тепла в окружающую среду ректификационные аппараты покрывают тепловой изоляцией.
Кипятильник или куб предназначены для превращения в пар части жидкости, стекающей из колонны, и подвода пара в ее нижнюю часть (под насадку или нижнюю тарелку). Кипятильники имеют поверхность нагрева в виде змеевика или представляют собой кожухотрубчатый теплообменник, встроенный в нижнюю часть колонны. Более удобны для ремонта и замены выносные кипятильники, которые устанавливают ниже колонны с тем, чтобы обеспечить естественную циркуляцию жидкости.
В периодически действующих колоннах куб является не только испарителем, но и емкостью для исходной смеси. Поэтому объем куба должен быть в 1,3—1,6 раза больше его единовременной загрузки (на одну операцию). Обогрев кипятильников наиболее часто производится водяным насыщенным паром.
Дефлегматор, предназначенный для конденсации паров и подачи орошения (флегмы) в колонну, представляет собой кожухотрубчатый теплообменник, в межтрубном пространстве которого обычно конденсируются пары, а в трубах движется охлаждающий агент (вода). Однако вопрос о направлении конденсирующихся паров и охлаждающего агента внутрь или снаружи труб следует решать в каждом конкретном случае, учитывая желательность повышения коэффициента теплопередачи и удобство очистки поверхности теплообмена.
В случае частичной конденсации паров в дефлегматоре его располагают непосредственно над колонной, чтобы обеспечить большую компактность установки, вне габаритов колонны. При этом конденсат (флегму) из нижней части дефлегматора подают непосредственно через гидравлический затвор наверх колонны, так как в данном случае отпадает необходимость в делителе флегмы.
В случае полной конденсации паров в дефлегматоре его устанавливают выше колонны, непосредственно на колонне или ниже верха колонны для того, чтобы уменьшить общую высоту установки.
В процессах ректификации наиболее широкое распространение получили барботажные колонны. Они применимы для больших производительностей, широкого диапазона изменений нагрузок по пару и жидкости и могут обеспечить весьма четкое разделение смесей. Недостаток барботажных аппаратов – относительно высокое гидравлическое сопротивление в условиях ректификации не имеет такого существенного значения, как в процессах абсорбции, где величина р связана со значительными затратами энергии на перемещение газа через аппарат. При ректификации повышение гидравлического сопротивления приводит лишь к некоторому увеличению давления и соответственно к повышению температуры кипения жидкости в кипятильнике колонны. Однако тот же недостаток (значительное гидравлическое сопротивление) сохраняет свое значение для процессов ректификации под вакуумом.
В насадочных колоннах используются насадки различных типов, но в промышленности наиболее распространены колонны с насадкой из колец Рашига. Меньшее гидравлическое сопротивление насадочных колонн по сравнению с барботажными особенно важно при ректификации под вакуумом. Даже при значительном вакууме в верхней части колонны вследствие большого гидравлического сопротивления ее разрежение в кипятильнике может оказаться недостаточным для требуемого снижения температуры кипения исходной смеси.
Для уменьшения гидравлического сопротивления вакуумных колонн в них применяют насадки с возможно большим свободным объемом.
В самой ректификационной колонне не требуется отводить тепло, как в абсорберах. Поэтому трудность отвода тепла из насадочных колонн является, скорее, достоинством, чем недостатком насадочных колонн в условиях процесса ректификации.
Однако и при ректификации следует считаться с тем, что равномерное распределение жидкости по насадке в колоннах большого диаметра затруднено. В связи с этим диаметр промышленных насадочных ректификационных колонн обычно не превышает 0,8–1 м.
Как уже отмечалось, в насадочных колоннах поверхностью контакта фаз является смоченная поверхность насадки. Поэтому насадка должна иметь возможно большую поверхность в единице объема.
При выборе размеров насадки необходимо учитывать, что с увеличением размеров ее элементов увеличивается допустимая скорость газа, а гидравлическое сопротивление насадочной колонны снижается. Общая стоимость колонны с крупной насадкой будет ниже за счет снижения диаметра колонны, несмотря на то, что высота насадки несколько увеличится по сравнению с такой же в колонне, заполненной элементами насадки меньших размеров.
Если необходимо провести глубокое разделение газовой смеси, требующее большого числа единиц переноса, то в этом случае рациональнее использовать мелкую насадку.
При выборе размера насадки необходимо соблюдать условие, при котором отношение диаметра D колонны к эквивалентному диаметру dЭ насадки 10.
Пленочные аппараты. Эти аппараты применяются для ректификации под вакуумом смесей, обладающих малой термической стойкостью при нагревании (например, различные мономеры и полимеры, а также другие продукты органического синтеза).
В ректификационных аппаратах пленочного типа достигается низкое гидравлическое сопротивление. Кроме того, задержка жидкости в единице объема работающего аппарата мала.
К числу пленочных ректификационных аппаратов относятся колонны с регулярной насадкой в виде пакетов вертикальных трубок диаметром 6–20 мм (многотрубчатые колонны), а также пакетов плоскопараллельной или сотовой насадки с каналами различной формы, изготовленной из перфорированных металлических листов или металлической сетки.
Недостатки роторных колонн: ограниченность их высоты и диаметра (из-за сложности изготовления и требований, предъявляемых к прочности и жесткости ротора), а также высокие эксплуатационные расходы.
В случае загрязненных сред целесообразно применять регулярные насадки, в том числе при работе под повышенным давлением. Для этих сред можно использовать также так называемые колонны с плавающей насадкой. В качестве насадки в таких колоннах обычно применяют легкие полые шары из пластмассы, которые при достаточно высоких скоростях газа переходят во взвешенное состояние. Вследствие их интенсивного взаимодействия такая насадка практически не загрязняется.
В колоннах с плавающей насадкой возможно создание более высоких скоростей, чем в колоннах с неподвижной насадкой. При этом увеличение скорости газа приводит к расширению слоя шаров, что способствует снижению скорости газа в слое насадки. Поэтому существенное увеличение скорости газового потока в таких аппаратах (до 3–5 м/с) не приводит к значительному возрастанию их гидравлического сопротивления.
- Минобрнауки рф
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Тепловые процессы и аппараты
- 2.1. Способы передачи теплоты
- 2.2. Тепловые балансы
- 2.3. Температурное поле и температурный градиент
- 2.4. Передача тепла теплопроводностью
- 2.5. Тепловое излучение
- 2.6. Конвективный теплообмен
- 2.6.1. Теплоотдача
- 2.6.2. Дифференциальное уравнение конвективного теплообмена
- 2.6.3. Подобие процессов теплообмена
- 2.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 2.6.5. Теплоотдача при изменении агрегатного состояния
- 2.7. Сложный теплообмен
- 2.8. Процессы нагревания, охлаждения и конденсации
- 2.9. Теплообменные аппараты
- 2.9.1. Классификация и типы теплообменных аппаратов
- 2.9.2. Расчет теплообменных аппаратов
- 2.9.3. Выбор и проектирование поверхностных теплообменников
- 3. Массообменные процессы и аппараты
- 3.1. Основы массопередачи
- 3.1.1. Общие сведения о массообменных процессах
- 3.1.2. Основные расчетные зависимости массообменных процессов
- 3.1.3. Материальный баланс массообменных процессов
- 3.1.4. Движущая сила массообменных процессов
- 3.1.5. Модифицированные уравнения массопередачи
- 3.1.6. Основные законы массопередачи
- 3.1.7. Подобие процессов переноса массы
- 3.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 3.2. Абсорбция
- 3.2.1. Равновесие при абсорбции
- 3.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 3.2.4. Конструкции колонных абсорбционных аппаратов
- 3.2.5. Десорбция
- 3.3. Перегонка жидкостей
- 3.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 3.3.4. Ректификация многокомпонентных смесей
- 3.3.5. Тепловой баланс процесса ректификации
- 3.3.6. Специальные виды перегонки
- 3.3.7. Устройство ректификационных аппаратов
- 3.4. Экстракция
- 3.4.1. Жидкостная экстракция
- 3.4.2. Равновесие при экстракции
- 3.4.3. Материальный баланс экстракции
- 3.4.4. Кинетические закономерности процесса экстракции
- 3.4.5. Принципиальные схемы процесса экстракции
- 3.4.6. Конструкции экстракторов
- 3.5. Адсорбция
- 3.5.1. Равновесие в процессах адсорбции
- 3.5.2. Промышленные адсорбенты
- 3.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 3.6. Сушка
- 3.6.1. Равновесие в процессах сушки
- 3.6.2. Конструкции сушилок и области их применения
- 3.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке: