2.6.2. Дифференциальное уравнение конвективного теплообмена
При конвективном теплообмене тепло распространяется в жидкости одновременно теплопроводностью и конвекцией. Процесс распространения тепла теплопроводностью описывается дифференциальным уравнением вида
.
Левая часть этого уравнения представляет локальное изменение температуры элемента, выделенного в неподвижной среде.
При конвективном теплообмене элемент перемещается из одной точки пространства в другую. В этом случае изменение температуры элемента может быть выражено при помощи субстациональной производной, учитывающей одновременно изменения параметра во времени и в пространстве, связанные с перемещением элемента из одной точки в другую. Субстанциональная производная, характеризующая полное изменение температуры движущего элемента, может быть записана в следующем виде:
.
Если в уравнении теплопроводности заменить локальное изменение температуры полным, то можно получить дифференциальное уравнение конвективного переноса тепла Фурье-Кирхгофа:
.
Для полного математического описания это уравнение должно быть дополнено уравнением, характеризующим условия на границе раздела движущейся среды и твердого тела.
У поверхности твердого тела, находящегося в движущейся среде, всегда имеется пограничный слой толщиной , через который тепло распространяется теплопроводностью (рис. 3.3).
Количество переданного через этот слой тепла при его распространении от теплообменной поверхности к ядру жидкостного потока можно определить по закону Фурье
.
Это же количество тепла можно найти по закону Ньютона:
.
Приравнивая правые части последних равенств, получаем уравнение, характеризующее условия теплообмена на границе раздела движущейся среды и твердого тела:
.
Полученное уравнение и дифференциальное уравнение конвективного массообмена в полной мере описывают процесс, но для их решения необходимо еще знать проекции скоростей потока жидкости по соответствующим координатам.
С этой целью система уравнений должна включать дифференциальные уравнения движения и неразрывности. Но, как уже было сказано выше, такая система уравнений не имеет аналитического решения. Не имеет аналитического решения также система с дифференциальным уравнением конвективного теплообмена.
Рис. 2.3. Изменение температуры в движущей среде при конвективном теплообмене
Таким образом, аналитически не может быть установлено ни температурное поле в движущейся среде, ни величина теплового потока. Для решения конкретных инженерных задач приходится прибегать к эксперименту и обобщениям с использованием методов теории подобия.
- Минобрнауки рф
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Тепловые процессы и аппараты
- 2.1. Способы передачи теплоты
- 2.2. Тепловые балансы
- 2.3. Температурное поле и температурный градиент
- 2.4. Передача тепла теплопроводностью
- 2.5. Тепловое излучение
- 2.6. Конвективный теплообмен
- 2.6.1. Теплоотдача
- 2.6.2. Дифференциальное уравнение конвективного теплообмена
- 2.6.3. Подобие процессов теплообмена
- 2.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 2.6.5. Теплоотдача при изменении агрегатного состояния
- 2.7. Сложный теплообмен
- 2.8. Процессы нагревания, охлаждения и конденсации
- 2.9. Теплообменные аппараты
- 2.9.1. Классификация и типы теплообменных аппаратов
- 2.9.2. Расчет теплообменных аппаратов
- 2.9.3. Выбор и проектирование поверхностных теплообменников
- 3. Массообменные процессы и аппараты
- 3.1. Основы массопередачи
- 3.1.1. Общие сведения о массообменных процессах
- 3.1.2. Основные расчетные зависимости массообменных процессов
- 3.1.3. Материальный баланс массообменных процессов
- 3.1.4. Движущая сила массообменных процессов
- 3.1.5. Модифицированные уравнения массопередачи
- 3.1.6. Основные законы массопередачи
- 3.1.7. Подобие процессов переноса массы
- 3.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 3.2. Абсорбция
- 3.2.1. Равновесие при абсорбции
- 3.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 3.2.4. Конструкции колонных абсорбционных аппаратов
- 3.2.5. Десорбция
- 3.3. Перегонка жидкостей
- 3.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 3.3.4. Ректификация многокомпонентных смесей
- 3.3.5. Тепловой баланс процесса ректификации
- 3.3.6. Специальные виды перегонки
- 3.3.7. Устройство ректификационных аппаратов
- 3.4. Экстракция
- 3.4.1. Жидкостная экстракция
- 3.4.2. Равновесие при экстракции
- 3.4.3. Материальный баланс экстракции
- 3.4.4. Кинетические закономерности процесса экстракции
- 3.4.5. Принципиальные схемы процесса экстракции
- 3.4.6. Конструкции экстракторов
- 3.5. Адсорбция
- 3.5.1. Равновесие в процессах адсорбции
- 3.5.2. Промышленные адсорбенты
- 3.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 3.6. Сушка
- 3.6.1. Равновесие в процессах сушки
- 3.6.2. Конструкции сушилок и области их применения
- 3.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке: