13.9.2. Дроссельное регулирование
Дросселем называют гидравлическое сопротивление, которое устанавливают для регулирования потока жидкости, следовательно, и скорости выходного звена гидропривода. Конструкции дросселей будут рассмотрены ниже.
Скорость перемещения поршня в цилиндре или частоту вращения вала гидромотора можно регулировать, изменяя сопротивление дросселя.
В зависимости от места установки дросселя в схеме гидропривода по отношению к гидродвигателю различают три способа дроссельного регулирования:
- дроссель «на входе» (рис.13.16);
- дроссель «на выходе» (рис.13.17);
- дроссель «на ответвлении» (рис.13.18).
Рис.13.16 Рис.13.17 Рис. 13.18
дроссельные устройства. По конструкции дроссели подразделяются на нерегулируемые (обозначение ) и регулируемые (обозначение), а по виду гидравлических потерь в дросселях - на линейные и нелинейные.
В линейных дросселях движению жидкости препятствует сопротивление трения жидкости о стенки канала. Для получения больших сопротивлений сечение канала уменьшают, а длину увеличивают. В дросселях такого типа устанавливается ламинарный режим движения жидкости, при котором перепад давления прямо пропорционален первой степени скорости или расхода и может быть вычислен по формуле
,
где d – диаметр, например, капилляра; - коэффициент динамической вязкости;l - длина; - перепад давления на дросселе.
Примером линейного нерегулируемого дросселя может служить, капилляр. встроенный в основной трубопровод (рис.13.19). Для увеличения расхода устанавливают пакет капилляров (рис.13.20).
Рис.13.19
Рис.13.20
Примером линейного регулируемого дросселя может служить пробка с винтовой нарезкой, помещенной в хорошо пригнанный по наружному диаметру корпус (рис.13.21). Длину нарезки можно менять, следовательно, будет меняться и расход через дроссель.
Рис.13.21
Следует отметить нестабильность работы системы с линейным дросселем, так как его сопротивление зависит от вязкости жидкости, которая изменяется с изменением температуры.
В нелинейных дросселях широко используют местные сопротивления в виде диафрагм и насадков. В дросселях такого типа устанавливается турбулентный режим движения жидкости, при котором перепад давлений пропорционален второй степени скорости или расхода; последний может быть вычислен по формуле
,
где - коэффициент расхода;- площадь отверстия дросселя;- перепад давления на дросселе.
Примером нелинейного нерегулируемого дросселя является калиброванное отверстие (диафрагма) 1, установленное в основной поток жидкости (рис.13.22), или пакет пластичных дросселей.
Рис.13.22
Примерами нелинейных нерегулируемых дросселей могут быть золотники и краны различных конструкций (рис.13.23).
Рис.13.23
Так как в нелинейном дросселе потери энергии связаны с отрывом потока и вихреобразованиями, а потери от трения минимальны, то гидравлическое сопротивление такого дросселя практически не зависит от вязкости жидкости и изменения температуры. Нелинейные дроссели обеспечивают стабильность характеристики Q=f(Δp) в большом диапазоне чисел Re.
анализ работы гидропривода с дроссельным регулированием. В системах дроссельного регулирования характерным условием является неравенство
,
а применительно к гидроприводу поступательного движения
(13.2)
где Qн – подача насоса; - эффективная площадь гидроцилиндра;Vmax- максимальная скорость штока гидроцилиндра.
При таком условии избыточная часть жидкости от насоса отводится через переливной клапан в гидроемкость не выполнив никакой работы.
Система с дросселем «на входе» (рис.13.24).
Рис.13.24
В гидросистеме между насосом 1 и гидрораспределителем 3 установлен дроссель А, от настройки которого зависит скорость поршня в цилиндре 4. если сохранено условие (13.2), то избыток жидкости отводится через переливной клапан 2, при этом в нагнетательной полости насоса и перед дросселем удерживается постоянное давление, соответствующее настройке клапана 2.
Рассмотрим работу этой системы и выясним, как влияет на скорость поршня изменение полезной нагрузки Р при неизменной настройке дросселя.
Допустим, что поршень со штоком перемещается вправо. Давление рабочей жидкости в левой полости обозначим рраб, в правой – рпр (противодавление), силу трения – Т, полезную нагрузку – Р.
Составим уравнение равновесия поршня силового цилиндра:
.
В этом уравнении силу трения Т и силу от противодавления можно принять постоянными.
Следовательно, если изменится внешняя нагрузка Р, то должно измениться давление pраб. Так как дроссель А установлен последовательно к гидроцилиндру, то Qдр = Qгц. Расход, например, через нелинейный дроссель
;
.
Так как рп.к.= const, то расход через дроссель, следовательно, и скорость поршня гидроцилиндра будут меняться с изменением внешней нагрузки Р.
Система с дросселем на входе допускает регулирование скорости гидродвигателя только в том случае, если направление действия нагрузки не совпадает с направлением движения выходного звена. Действительно, если нагрузка направлена в ту же сторону, что и движение выходного звена системы, то при уменьшении подачи жидкости через дроссель поршень может перемещаться быстрее, чем будет заполняться полость цилиндра. Произойдет разрыв потока в магистрали перед поршнем.
Кроме того, например, в грузоподъемных машинах поднятый груз при опускании может упасть, так как внешняя нагрузка – груз – будет преодолевать при опускании только силу трения поршня о цилиндр и противодавление в сливной линии. Поэтому для стабилизации сил трения на сливной магистрали устанавливается подпорный клапан 5 (или демпфер), создающий противодавление рпр в нерабочей полости цилиндра. Давление подпора не должно быть больше 0,2…0,3 МПа.
Система с дросселем на выходе. В гидравлической системе (рис.13.25) дроссель В подключен на сливной магистрали после распределителя 3. скорость поршня здесь определяется объемом жидкости, который вытесняется из штоковой полости цилиндра 4 через дроссель В в гидроемкость.
Рис.13.25
Проанализируем работу этой системы и установим влияние изменения нагрузки Р на скорость поршня.
Составим уравнение равновесия поршня силового цилиндра:
.
Если сохраняется условие, при котором >, то давление рраб в процессе не изменяется и соответствует настройке переливного клапана 2 рп.к, т.е. . Силы трения Т для данного механизма почти неизменны. Так как по условию нагрузки Р величина переменная, то из уравнения равновесия следует, что противодавление рпр тоже будет переменным.
Давление перед дросселем «В» при некотором допущении может быть принято равным рпр, а после дросселя – почти атмосферному рат. Поэтому перепад давления в дросселе при подключении последнего на выходе является величиной переменной. Следовательно, переменным будет расход жидкости через дроссель и скорость поршня.
Система с дросселем «на выходе» более предпочтительна, чем система с дросселем «на входе». Во-первых, тепло, выделяющееся при прохождении через дроссель, отводится в гидроемкость, не нагревая гидродвигатель. Во-вторых, эту систему целесообразно, применять в монтажных механизмах, т.к. перекрывая дроссель В, можно мгновенно останавливать в нужном положении поднятый груз.
В рассмотренных выше системах дроссельного регулирования мощность, потребляемая насосом, постоянна и независима от внешней (полезной) нагрузки Р.
Система с дросселем на ответвлении. Рассмотрим третий возможный способ подключения дросселя в систему – на ответвлении (рис.13.26).
Поток жидкости, идущий от насоса 1, разделяется по двум направлениям: к гидроцилиндру 4 через распределитель 3 и через дроссель С, который установлен в ответвлении параллельно силовому цилиндру. Скорость поршня как и в предыдущих системах, определяется настройкой дросселя С.
Рис.13.26
При закрытом дросселе скорость поршня максимальна. По мере открытия его часть жидкости начинает циркулировать в гидроемкость, а скорость поршня соответственно уменьшается. Если при полном открытии дросселя сопротивление, оказываемое им и магистралью после дросселя, меньше, чем в цилиндропоршневой группе и подпорном клапане 5, то вся жидкость от насоса будет отводиться через дроссель в гидроемкость, а поршень остановится.
При указанном расположении золотника в распределителе 3 к насосу подключена поршневая полость гидроцилиндра 4, давление в которой рраб определяется нагрузкой Р+Т. Если нагрузка в процессе работы изменяется, то перепад давления в дросселе зависит от нагрузки. Следовательно, расход жидкости через дроссель и скорость выходного звена меняются.
Клапан 2 в системе включается в работу эпизодически в момент перегрузок, выполняя, таким образом, только функцию предохранительного устройства.
Мощность, потребляемая насосом, и давление в полости нагнетания пропорциональны полезной нагрузке, поэтому гидросистема с дросселем, установленным параллельно силовому цилиндру, экономичней систем с дросселем «на входе» и «на выходе», так как к.п.д. ее выше.
Из анализа работы гидравлических систем с дроссельным способом регулирования скорости следует, что независимо от места расположения дросселя не обеспечивается постоянство скорости поршня при неизменной настройке дросселя, если нагрузка в процессе работы изменяется. Объясняется это нестабильным перепадом давления в дросселе.
Поэтому напрашивается само собой устройство, в котором автоматически поддерживался бы постоянным перепад давления на дросселе с изменением нагрузки на выходном звене. Такое устройство называется дроссель-регулятором. Этот аппарат состоит из дросселя и редукционного клапана, размещенных в общем корпусе. Расход жидкости устанавливается дросселем, а постоянство разности давления до и после дросселя обеспечивается автоматически редукционным клапаном.
- «Челябинский государственный агроинженерный
- Университет»
- Гидравлика
- Челябинск
- Введение
- Раздел 1 Гидравлика
- Силы, действующие в жидкости
- 2. Физические свойства жидкости
- 2.1. Плотность и удельный вес жидкости
- 2.2. Сжимаемость жидкости
- 2.3. Температурное расширение жидкости
- 2.4. Вязкость жидкостей
- 3. Гидростатика
- 3.1. Свойства гидростатического давления
- 3.2. Дифференциальные уравнения равновесия жидкости (уравнения Леонарда Эйлера)
- 3.3. Основное уравнение гидростатики. Эпюры гидростатического давления
- 3.4. Сила гидростатического давления на плоские поверхности
- 3.5. Сила гидростатического давления, действующая на криволинейные поверхности
- 3.6. Закон Архимеда. Основы теории плавания
- 3.7. Гидростатические машины и механизмы
- 4. Гидродинамика
- 4.1. Основные понятия
- 4.2. Уравнение неразрывности (сплошности)
- 4.3. Уравнение д.Бернулли для элементарной струйки идеальной жидкости. График уравнения д.Бернулли
- 4.4. Уравнение д.Бернулли для элементарной струйки реальной жидкости. График уравнения д.Бернулли
- 4.5. Уравнение д.Бернулли для потока реальной жидкости
- 5. Определение гидравлических потерь
- 5.1. Классификация потерь напора
- 5.2. Основное уравнение равномерного движения
- 5.3. Формулы для определения гидравлических потерь
- 5.4. Режимы движения жидкости. Критерий рейнольдса
- 5.5. Особенности ламинарного режима движения жидкости
- 5.6. Особенности турбулентного режима движения жидкости
- 5.7. Влияние режима движения жидкости и шероховатости на величину коэффициента трения в трубах (график Никурадзе)
- 6. Гидравлический расчет трубопроводов
- 6.1. Классификация трубопроводов
- 6.2. Расходная характеристика трубопровода (модуль расхода)
- 6.3. Гидравлические характеристики трубопроводов
- 6.4. Равномерный путевой расход
- 6.5. Гидравлический удар в трубопроводах. Гидравлический таран
- 7. Истечение жидкости из отверстий и насадков
- 7.1. Истечение жидкости из малого отверстия в тонкой стенке
- 7.2. Истечение жидкости через насадки
- 8. Гидравлическое моделирование
- 8.1. Сущность моделирования
- 8.2. Основные законы гидродинамического подобия. Критерий подобия Ньютона
- 8.3. Критерий подобия Рейнольдса, Фруда, Эйлера, Вебера
- Раздел 2 Гидравлические машины
- 9. Насосы
- 9.1. Классификация насосов
- 9.2. Основные параметры насосов
- 9.2.1. Напор, развиваемый насосом
- 9.2.2. Мощность и кпд насоса
- 9.3. Область применения насосов
- 10. Динамические насосы
- 10.1. Центробежные насосы
- 10.1.1. Схема устройства и принцип действия
- 10.1.2. Основное уравнение центробежного насоса
- 10.1.3. Подача центробежного насоса
- 10.1.4. Теоретические характеристики центробежного насоса
- 10.1.5. Действительная характеристика центробежного наоса
- 10.1.6. Универсальные характеристики центробежного насоса
- 10.1.7. Процесс всасывания и явление кавитации в центробежном насосе
- 10.1.8. Законы пропорциональности центробежного насоса
- 10.1.9. Работа центробежного насоса на сеть
- 10.1.10. Регулирование работы центробежного насоса
- 10.1.11. Совместная работа центробежных насосов
- 10.1.12. Центробежные насосы специального назначения
- 10.2. Насосы трения
- 10.2.1. Вихревые насосы
- 10.2.2. Струйные насосы
- 10.2.3. Воздушные насосы
- 10.2.4. Шнековые насосы
- 10.2.5. Дисковые насосы
- 10.2.6. Лабиринтные насосы
- 10.2.7. Вибрационные насосы
- 11. Объемные насосы
- 11.1. Возвратно - поступательные насосы
- 11.2. Роторные насосы
- Раздел 3 гидравлическиЙ привод
- 12. Классификация
- 13. Объемный гидропривод
- 13.1. Функциональная схема
- 13.2. Принципиальная схема гидропривода
- 13.3. Область применения объемных гидроприводов
- 13.4. Достоинства и недостатки объемных гидроприводов
- 13.5. Требования к рабочей жидкости
- 13.6. Объемный гидропривод возвратно-поступательного движения
- 13.7. Принцип расчета гидропривода
- 13.8. Объемный гидропривод вращательного движения
- 13.9. Регулирование скорости гидропривода
- 13.9.1. Объемное регулирование
- 13.9.2. Дроссельное регулирование
- 13.10. Следящий гидропривод
- 14. Гидролинии, гидроемкости, фильтры
- Раздел 4 сельскохозяйственное водоснабжение
- 15. Системы водоснабжения. Классификация.
- Слово о воде
- 16. Водоснабжение из поверхностных источников
- 17. Водоснабжение из подземных источников
- 18. Водонапорные и регулирующие устройства
- 19. Требования, предъявляемые к качеству хозяйственно–питьевой воды. Методы улучшения качества воды
- 20. Основные данные для проектирования водопроводной сети
- Раздел 5 Водоотведение
- 21. Основы канализации
- 22. Уловители нефтепродуктов
- Литература
- Содержание