4.1. Основные понятия
Гидродинамика – раздел гидравлики, который изучает законы движения жидкости.
Представим себе движущуюся сплошную среду, каковой является жидкость, например, в лотке переменного в плане сечения. Поместим на поверхности множество миниатюрных корабликов со светящимися лампочками. Сфотографировав в темноте с определенной выдержкой на пленке, мы получим штрихи, длина которых будет различна, т.е. светящиеся точки движутся с различными скоростями в различных направлениях (рис.4.1).
Рис.4.1
Мгновенная картина скоростей частиц жидкости в пространстве, заполненном жидкостью, называется полем скоростей.
Если бы нам удалось определить в точках движущейся жидкости давление, то мгновенная картина давлений называлась бы полем давлений.
Движущаяся жидкость может иметь два принципиально различных поля: скоростей и давлений.
Если поле скоростей и давлений не зависит от времени, то движение называется установившимся, или стационарным. Примером такого движения может быть течение жидкости из резервуара с постоянным уровнем по трубопроводу постоянного или переменного диаметра (рис.4.2).
Рис.4.2
В сечениях 1-1, 2-2, 3-3 и т.д. скорости и давления будут разными, но во времени они останутся постоянными, т.е. поля скоростей и давлений являются функцией только координат U,р =f(x,y,z).
Если поле скоростей и давлений зависит от времени, то движение называется неустановившимся, или нестационарным. Примером такого движения может служить опорожнение резервуара по трубопроводу, моменты включения или выключения насосов, закрытие или открытие запорной арматуры и т.п. В этом случае U,р =f(x,у,z,t).
Аналитическое изучение в целом движущейся сплошной среды является сложной задачей. Для понимания физической сущности явлений, происходящих в движущейся жидкости, и возможности их математического описания в классической гидромеханике вводят струйную модель движения жидкости.
Представим себе, что в точках 1,2,3,4,5 и т.д., находящихся на бесконечно малом расстоянии друг от друга, движущейся жидкости нам известны векторы скоростей . Линию, проведенную касательно к этим векторам, будем называтьлинией тока (рис.4.3). В установившемся движении она совпадает с траекторией, в неустановившемся – не совпадает.
Рис.4.3
Теперь движущуюся сплошную среду представим состоящей из бесконечно большого числа линий тока (рис.4.4).
Рис.4.4
Выделим в сплошной среде на каком-то расстоянии друг от друга два замкнутых контура и через их периметры проведем лини тока (рис.4.4). Образуется трубка тока, а жидкость, протекающую внутри этой трубки тока, будем называть элементарной струйкой, а их совокупность – потоком.
Сечение, нормальное в каждой своей точке к линиям тока, называется живым сечением струйки. Площадь живого сечения обозначим через d. Ввиду малости живого сечения элементарной струйки местные скорости жидкости в его пределах можно считать одинаковыми.
В общем случае скорость и площадь живых сечений по длине струйки могут изменяться. Будет считать, что обмен жидкостью между струйками отсутствует.
Количество жидкости, протекающее через живое сечение струйки в единицу времени, называется элементарным расходом. Он бывает объемный, массовый и весовой:
объемный расход dQ = U d, м3/с;
массовый расход dМ = , кг/с;
весовой расход dG = , Н/с.
Для потока живое сечение будем считать условно плоским и проведенным нормально к его оси.
Так как по живому сечению потока скорости струек распределяются неравномерно, то для определения объемного расхода необходимо знать закон распределения этих скоростей, что является довольно сложной задачей. Для упрощения определения расхода потока введено понятие средней скорости потока V. Это такая воображаемая скорость, с которой должны двигаться все частицы потока, чтобы расход оказался равным расходу при движении жидкости с действительными неодинаковыми для отдельных частиц скоростями. Единственный способ определения средней скорости: является .таким образом, для потока:
объемный расход Q = ;
массовый расход М = ;
весовой расход G = .
В зависимости от причин и общих условий, при которых происходит движение, различают безнапорное и напорное движения.
Безнапорное движение – это движение жидкости под действием сил тяжести и при наличии свободной поверхности (каналы, реки, канализационные системы) (рис.4.5). В этом случае обеспечивается геометрический уклон .
Рис.4.5
Напорное движение жидкости в потоке – это, как правило, движение без свободной поверхности. Условием такого движения должна быть разность давлений по длине потока: р1>р2 (рис.4.6).
Рис.4.6
разнообразие геометрических форм живых сечений потока и необходимость универсализации расчетных зависимостей обусловили введение понятия гидравлический радиус, который равен отношению площади живого сечения к длине смоченного периметра в этом сечении: . Так, например, для живого сечения круглой формы радиусомгидравлический радиус .
- «Челябинский государственный агроинженерный
- Университет»
- Гидравлика
- Челябинск
- Введение
- Раздел 1 Гидравлика
- Силы, действующие в жидкости
- 2. Физические свойства жидкости
- 2.1. Плотность и удельный вес жидкости
- 2.2. Сжимаемость жидкости
- 2.3. Температурное расширение жидкости
- 2.4. Вязкость жидкостей
- 3. Гидростатика
- 3.1. Свойства гидростатического давления
- 3.2. Дифференциальные уравнения равновесия жидкости (уравнения Леонарда Эйлера)
- 3.3. Основное уравнение гидростатики. Эпюры гидростатического давления
- 3.4. Сила гидростатического давления на плоские поверхности
- 3.5. Сила гидростатического давления, действующая на криволинейные поверхности
- 3.6. Закон Архимеда. Основы теории плавания
- 3.7. Гидростатические машины и механизмы
- 4. Гидродинамика
- 4.1. Основные понятия
- 4.2. Уравнение неразрывности (сплошности)
- 4.3. Уравнение д.Бернулли для элементарной струйки идеальной жидкости. График уравнения д.Бернулли
- 4.4. Уравнение д.Бернулли для элементарной струйки реальной жидкости. График уравнения д.Бернулли
- 4.5. Уравнение д.Бернулли для потока реальной жидкости
- 5. Определение гидравлических потерь
- 5.1. Классификация потерь напора
- 5.2. Основное уравнение равномерного движения
- 5.3. Формулы для определения гидравлических потерь
- 5.4. Режимы движения жидкости. Критерий рейнольдса
- 5.5. Особенности ламинарного режима движения жидкости
- 5.6. Особенности турбулентного режима движения жидкости
- 5.7. Влияние режима движения жидкости и шероховатости на величину коэффициента трения в трубах (график Никурадзе)
- 6. Гидравлический расчет трубопроводов
- 6.1. Классификация трубопроводов
- 6.2. Расходная характеристика трубопровода (модуль расхода)
- 6.3. Гидравлические характеристики трубопроводов
- 6.4. Равномерный путевой расход
- 6.5. Гидравлический удар в трубопроводах. Гидравлический таран
- 7. Истечение жидкости из отверстий и насадков
- 7.1. Истечение жидкости из малого отверстия в тонкой стенке
- 7.2. Истечение жидкости через насадки
- 8. Гидравлическое моделирование
- 8.1. Сущность моделирования
- 8.2. Основные законы гидродинамического подобия. Критерий подобия Ньютона
- 8.3. Критерий подобия Рейнольдса, Фруда, Эйлера, Вебера
- Раздел 2 Гидравлические машины
- 9. Насосы
- 9.1. Классификация насосов
- 9.2. Основные параметры насосов
- 9.2.1. Напор, развиваемый насосом
- 9.2.2. Мощность и кпд насоса
- 9.3. Область применения насосов
- 10. Динамические насосы
- 10.1. Центробежные насосы
- 10.1.1. Схема устройства и принцип действия
- 10.1.2. Основное уравнение центробежного насоса
- 10.1.3. Подача центробежного насоса
- 10.1.4. Теоретические характеристики центробежного насоса
- 10.1.5. Действительная характеристика центробежного наоса
- 10.1.6. Универсальные характеристики центробежного насоса
- 10.1.7. Процесс всасывания и явление кавитации в центробежном насосе
- 10.1.8. Законы пропорциональности центробежного насоса
- 10.1.9. Работа центробежного насоса на сеть
- 10.1.10. Регулирование работы центробежного насоса
- 10.1.11. Совместная работа центробежных насосов
- 10.1.12. Центробежные насосы специального назначения
- 10.2. Насосы трения
- 10.2.1. Вихревые насосы
- 10.2.2. Струйные насосы
- 10.2.3. Воздушные насосы
- 10.2.4. Шнековые насосы
- 10.2.5. Дисковые насосы
- 10.2.6. Лабиринтные насосы
- 10.2.7. Вибрационные насосы
- 11. Объемные насосы
- 11.1. Возвратно - поступательные насосы
- 11.2. Роторные насосы
- Раздел 3 гидравлическиЙ привод
- 12. Классификация
- 13. Объемный гидропривод
- 13.1. Функциональная схема
- 13.2. Принципиальная схема гидропривода
- 13.3. Область применения объемных гидроприводов
- 13.4. Достоинства и недостатки объемных гидроприводов
- 13.5. Требования к рабочей жидкости
- 13.6. Объемный гидропривод возвратно-поступательного движения
- 13.7. Принцип расчета гидропривода
- 13.8. Объемный гидропривод вращательного движения
- 13.9. Регулирование скорости гидропривода
- 13.9.1. Объемное регулирование
- 13.9.2. Дроссельное регулирование
- 13.10. Следящий гидропривод
- 14. Гидролинии, гидроемкости, фильтры
- Раздел 4 сельскохозяйственное водоснабжение
- 15. Системы водоснабжения. Классификация.
- Слово о воде
- 16. Водоснабжение из поверхностных источников
- 17. Водоснабжение из подземных источников
- 18. Водонапорные и регулирующие устройства
- 19. Требования, предъявляемые к качеству хозяйственно–питьевой воды. Методы улучшения качества воды
- 20. Основные данные для проектирования водопроводной сети
- Раздел 5 Водоотведение
- 21. Основы канализации
- 22. Уловители нефтепродуктов
- Литература
- Содержание