5 Технический (металлургический) кремний
Кремний - один из самых популярных металлов XX века. Его свойства давать ценнейшие легкие сплавы, кремний-органические соединения, силициды, абразивы, стойкие огнеупоры, быть не заменимым в производстве сталей, сплавов, создавать основу современной радиоэлектроники и гелиоэнергетики - вот далеко не полный перечень сфер применения кремния технического, чистого и чистейшего.
Кремний широко используется современной промышленностью. Потребление его происходит по двум каналам. В виде кремнистых ферросплавов и чистого кремния различной степени очистки.
В настоящее время общегодовое производство технического кремния в мире составляет около 950 тыс./г., кремний производится в 44 странах мира 42 фирмами.
Основное количество ферросплавов (кремния) используют в сталеплавильном производстве для раскисления и получения легированных сталей различных марок, модификаций чугуна и сплавов.
Кремний, как легируюшая добавка, повышает твердость, прочность, упругость стали понижая ее вязкость. Кремний способствует улучшению магнитных свойств стали и применяется для легирования электротехнических сталей.
Многие сферы производства требуют применения чистого кремния, лишенного примесей.
Чистый кремний производится в более скромных масштабах, чем ферросилиций, однако, он является одним из самых необходимых элементов XX-XXI веков. Его свойства давать для космоса, авиации, транспортного машиностроение ценнейшие легкие сплавы, быть основой многочисленных и непрерывно увеличивающихся числом и качеством кремнийорганических соединений, силицидов, абразивов и особо стойких огнеупоров, создать основу современной радиоэлектронике - далеко не полный перечень применения кремния различной степени чистоты.
Наиболее крупными потребителями очищенного кремния могут являются следующие.
Производство легких сплавов. Силумин - сплав кремния с алюминием с небольшими добавками других металлов.
Производство кремнийорганических соединений следует характеризовать как новое прогрессивное направление, которое еще не сказало своего последнего слова. Главнейшие направления: производство силиконового каучука и резины, способной работать при температуре до 300°С и выше; смазочные масла для форсированных двигателей с рабочей температурой до 400-450 оС; смолы, лаки, клеи, изоляция до Т-250 оС; стойкие силиконовые краски для зданий, судов, сооружений и т.д. с консервирующими свойствами и др.
Производство силицированного графита и самосвязанного карбида кремния.
Организация новых непрерывных производств сопровождается повышением технологических параметров: температуры, давления, концентрации агрессивных сред и др. Повысились требования к конструкционным материалам, прежде всего в отношении их жаропрочности, стойкости к теплосменам, сопротивляемости износу, способности длительно работать без разрушения в условиях воздействия агрессивных сред различной концентрации. Этим требованиям удовлетворяют два новых материала.
Силицированный графит - жаропрочен, обладает хорошей стойкостью к теплосменам, хорошо сопротивляется износу и воздействию многих агрессивных жидкостей и паров как при низкой, так и высоких температурах. Он применяется для изготовления узлов и аппаратов, работающих в тяжелых условиях. Так, например, для изготовления защитной арматуры термопар погружения, тиглей, стопорно-разливочного припаса, различных насадок в металлургии, для изготовления уплотнительных колец, колец радиальных подшипников в химическом машиностроении.
Самосвязный карбид кремния - формованная и прокаленная при высокой температуре смесь карбида кремния, порошка кремния и сажи. Готовое изделие представляет собой монолит карбида кремния почти с нулевой пористостью. Применяется для изделий работающих до температуры 2000°С в широком ассортименте: чехлы термопар, трубы, тигли, стаканы, диски сцепления, особо стойкие детали для печей, огнеупоры и т.д.
Указанные материалы далеко не исчерпали своих возможностей.
Производство особо чистого полупроводникового кремния. Быстро развивающаяся новая отрасль, объемы в производства которой прогрессивно увеличиваются и достигли 80-90 годах десятков тысяч тонн очищенного кремния. Это обеспечивает выпуск широкого ассортимента БИС и СБИС-компонентов для микропроцессоров, запоминающих устройств, логических ИС, ЭВМ, бытовой электроники, чипов, тонких кремниевых лент, эпитаксиальных покрытий различного назначения, в том числе для солнечных элементов и батарей и т.д.
Сюда следует добавить производство компонентов радиоэлектроники из чистого карбида кремния, который обладает уникальными полупроводниковыми свойствами, сохраняющимися при высоких рабочих температурах до 1000°С для изготовления силовых диодов с высокой отдаваемой мощностью, детекторов ультрафиолетового излучения, фотонов и ядерных частиц в условиях радиационного облучения, повышенных механических нагрузок, вибрации и химической вредности рабочей среды.
Быстрое развитие радиоэлектроники и гелиоэнергетики (альтернативного метода получения энергии взамен АЭС и ТЗП) - перспективнейших направлений технического прогресса - потребует увеличение выпуска кремния повышенной чистоты для данных целей. К числу крупных потребителей кремния необходимо отнести производство карбида кремния для тугоплавких огнеупоров и абразивов.
Карбидокремниевые огнеупоры, представляющие собой обоженную спрессованную смесь SiC на глинистой или пековой связке, могут работать при температуре до 2000 °С и используются в самых ответственных узлах высокотемпературных печей.
Карбидкремневые абразивы, самые массовые абразивы в отечественной промышленности. Изготовляются из порошков карбида кремния на связке. Широко используются в машиностроении и др. отраслях для обработки, точки, шлифовки и полировки различных деталей и изделий из металлов, сплавов и др. материалов.
Доли потребления кремния перечисленными производствами различны по отдельным странам. Кроме того, они подвержены изменениям в каждой отдельной стране в зависимости от изменения структуры потребления.
- 1 Сырые материалы доменной плавки
- 1.1 Каменноугольный кокс
- 1.1.1 Процесс коксования
- 1.1.2 Устройство коксовых печей и цехов
- 1.1.3 Качество кокса
- 1.2 Железные руды
- 1.2.1 Классификация и генезис железных руд
- 1.2.2 Оценка качества железных руд
- 1.2.3 Важнейшие месторождения железных руд
- 2 Подготовка железных руд к доменной плавке
- 2.1 Современная к схема подготовки руд к доменной плавке
- 2.2 Агломерация железных руд и концентратов
- 2.2.1 Общие вопросы
- 2.2.2 Конвейерные агломерационные машины
- 2.2.3 Реакции между твердыми фазами
- 2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- 2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- 2.2.6 Качество агломерата
- 2.3 Производство железорудных окатышей
- 2.3.1 Получение сырых окатышей
- 2.3.2 Высокотемпературное упрочнение окатышей
- 2.3.3 Получение окатышей безобжиговым путем
- 2.3.4 Металлургические свойства окатышей
- 2.3.5 Сравнение металлургических свойств агломерата и окатышей
- 2.3.6 Производство металлизованных окатышей
- 2.4 Процессы восстановления в доменной печи
- 3 Образование чугуна и его свойства
- 3.1 Интенсификация доменной плавки
- 3.1.1 Нагрев дутья
- 3.1.2 Обогащение дутья кислородом
- 3.1.3 Водяной пар в дутье
- 3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- 3.2 Профиль доменной печи
- 3.2.1 Общее понятие о профиле
- 3.2.2 Основные размеры профиля и его составные части
- 3.1. Производство стали в конвертерах.
- 3.1.1 Бессемеровский процесс.
- 3.1.2 Томасовский процесс.
- 3.1.3 Кислородно-конвертерный процесс.
- 3.3 Производство стали в мартеновских печах.
- 3.4 Производство стали в электрических печах.
- 3.5 Новые методы производства и обработки стали.
- 4 Ферросплавы
- 4.1 Введение
- 4.2 Сырые материалы
- 4.2.1 Требования к рудам и их выбор
- 4.2.2 Восстановители
- 4.2.3 Железосодержащие материалы
- 4.2.4 Флюсы
- 4.3 Основные элементы конструкции рвп
- 5 Технический (металлургический) кремний
- 5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- 5.1.1 Общие положения
- 5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- 5.1.3. Схема технологических зон горна электропечи
- 5.1.4 Влияние примесей шихты на состав технического кремния
- 5.2 Ферросилиций
- 5.2.1 Физико-химические основы получения ферросилиция.
- 5.2.2 Технология производства ферросилиция.
- 6 Сплавы марганца
- 6.1 Применение и состав сплавов марганца
- 6.2 Марганцевые руды и их подготовка к плавке
- 6.3 Производство сплавов марганца
- 6.3.1 Высокоуглеродистый ферромарганец.
- 6.3.2 Силикомарганец
- 6.3.3 Низко- и среднеуглеродистый ферромарганец.
- 6.3.4 Металлический марганец.
- 7 Общие сведения о рудах и концентратах олова
- 7.1 Требования, предъявляемые к рудам и концентратам
- 7.2 Минералы олова
- 7.3 Промышленные типы месторождений олова
- 7.4 Типы оловянных концентратов, поступающих в металлургический передел
- 7.5 Методы обогащения оловянных руд
- 7.6 Влияние типа и вещественного состава руд на их обогатимость
- 7.7 Обогащение россыпей и коренных руд олова
- 7.7.1 Обогащение оловосодержащих россыпей
- 7.7.2 Обогащение оловянных руд коренных месторождений
- 7.8 Доводка оловянных концентратов
- 7.9 Основы современной металлургии олова
- 7.10 Основы теории оловянной восстановительной плавки
- 7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- 7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- 7.10.3 Шлаки оловянной восстановительной плавки
- 7.10.4 Плавка в электрических печах
- 7.10.5 Отечественная практика электроплавки оловянных концентратов
- 7.11 Схема рафинирования олова пирометаллургическим способом
- 8 Производство свинца
- 8.1 Введение
- 8.2 Руды и концентраты
- 8.3 Способы получения свинца
- 8.4 Шихта
- 8.4.1 Состав шихты
- 8.4.2 Приготовление шихты
- 8.4.3 Агломерирующий обжиг свинцовых концентратов
- 8.5 Теория шахтной восстановительной плавки
- 8.5.1 Общие сведения
- 8.5.2 Теоретические основы восстановления окислов металлов
- 8.5.3 Восстановительная способность печи и способы ее регулирования
- 8.5.4 Шлак свинцовой плавки
- 8.5.5 Штейн и шпейза
- 8.5.6 Шахтная восстановительная плавка
- 8.5.7 Топливо
- 8.5.8 Дутье
- 8.6 Реакционная плавка свинца
- 8.6.1 Теоретическая сущность процесса
- 8.6.2 Реакционная плавка в короткобарабанной печи
- 8.7 Электроплавка свинца
- 8.7.1 Реакционная электроплавка свинца
- 8.7.2 Восстановительная электроплавка свинца
- 9.1 Общие сведения и методы получения
- 9.2 Технологические свойства
- 9.3 Области применения
- 9.4 Характеристика рудного цинкового сырья
- 9.5 Основные способы извлечения цинка из сырья
- 9.6 Обжиг цинковых сульфидных концентратов
- 9.6.1 Цели и типы обжига
- 9.6.2 Химизм процессов обжига
- 9.6.3 Обжиг цинковых концентратов для выщелачивания
- 9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- 9.8 У глетермическое восстановление цинка
- 9.8.1 Цели и типы восстановления
- 9.8.2 Химизм восстановления окисленных цинковых материалов
- 9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- 9.10 Дистилляция цинка из агломерата
- 10 Производство меди и никеля
- 10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- 10.1.1 Классификация рудного сырья
- 10.1.2 Медные руды
- 10.1.3 Никелевые руды
- 10.2 Электроплавка окисленных никелевых руд.
- 10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- 10.4 Конвертирование никелевых и медно-никелевых штейнов
- 10.4.1 Термодинамика основных реакций процесса
- 10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- 10.5 Переработка медно-никелевого файнштейна
- 10.5.1 Разделение медно-никелевого файнштепна флотацией
- 10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- 10.6 Восстановительная электроплавка закиси никеля
- 10.7 Способы получения меди из рудного сырья
- 11 Способы получения алюминия
- 11.1 Основы электролиза криолитоглиноземиых расплавов
- 11.2 Сырье и основные материалы
- 11.2.1 Основные минералы и руды алюминия
- 11.2.2 Фториды
- 11.2.3 Огнеупорные и теплоизоляционные материалы
- 11.2.4 Проводниковые материалы
- 11.3 Корректировка состава электролита
- 11.4 Выливка металла
- 11.5 Транспортно-технологическая схема цеха электролиза
- 11.6 Способы очистки отходящих газов