9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
Сущность и назначение велъцевания
В отечественной практике цинкового производства вельцевание — наиболее распространенный пирометаллургический процесс восстановления цинка.
Сущность процесса состоит в том, что цинксодержащий дисперсный материал смешивают с коксиком и при максимальной температуре, исключающей плавление материала, перемешивают шихту для равномерной газификации коксика и отгонки цинка по всей массе шихты. Такой процесс углетермического восстановления протекает интенсивно благодаря сильно развитой межфазной поверхности взаимодействующих веществ и тесному контакту восстановителя с восстанавливаемыми фазами при участии активного СО в момент его образования, а также благодаря отводу продуктов реакций из зоны протекания процессов восстановления.
Сохранение до конца процесса восстанавливаемого материала в твердом состоянии исключает растворение остаточных цинксодержащих фаз в общей массе материала. Поэтому вельцевание позволяет достичь низких остаточных концентраций цинка в переработанном материале.
Дисперсность твердого восстановителя (коксик) и твердых восстанавливаемых материалов исключает значительное возрастание внутридиффузионных сопротивлений процессу. Благодаря этому достигаются при достаточно больших скоростях восстановления низкие остаточные концентрации цинка в шихте.
При вельцевании возгоны окисляются в непосредственной близости от поверхности шихты. Поэтому затраты на эндотермические реакции восстановления в значительной мере компенсируются тепловыделением при окислительных реакциях. Непрерывное перемешивание шихты и противоток газа и шихты во вращающйся печи обеспечивают хороший теплоотъем шихтой от футеровки печи и от газового слоя вблизи шихты, который разогрет за счет сгорания возгонов. Благодаря этому вельц-процесс требует сравнительно небольшого удельного расхода коксика как топлива, главным образом на компенсацию теплопотерь с отходящими газами и через стенки вельц-печи.
Вследствие перечисленных особенностей процесса вельцевание эффективно для переработки твердых дисперсных и небогатых по цинку промпродуктов цинкового, свинцового и других производств, перерабатывающих цинксодержащее сырье, а также промпродуктов обогащения и богатых окисленных цинковых и медно-цинковых руд. Процесс не ограничивает влажность исходных шихт. Они не требует высокой квалификации обслуживающего персонала благодаря устойчивости режима.
Наиболее распространено вальцевание цинковых кеков и гранулированных цинковистых шлаков.
Практика вельцевания
Для осуществления процесса используют вельц-печь — трубчатую вращающуюся вокруг своей оси печь, имеющую небольшой угол наклона к горизонту для создания направленного перемещения шихты от верхнего загрузочного торца к нижнему торцу, через который выгружают твердый остаток перерабатываемой шихты. Этот остаток называют клинкером. Схематически вельц-печь показана на рис. 116.
С нижнего торца печи вдувают воздух, который подогревают факельной горелкой в период пуска печи для быстрого подъема температуры в печи или для восполнения теплолритока от горения коксика. При правильно подобранном режиме процесса подтопка горелкой не нужна, но горелка облегчает управление процессом и ей обычно пользуются. Клинкер высыпается из печи в яму с водой, где происходит его охлаждение и грануляция. Газовый поток в печи направлен от нижнего торца к верхнему и создается напорным вентилятором на нижнем конце и отсасывающим вентилятором на верхнем конце), сасывающий вентилятор подключают за пылеуловителями).
Рис. 116. Схема вельц-печи с комплектующими узлами:
1 — нижняя головка печи; 2 - опорные бандажи; 3 — венечная шестерня на привод; 4 - корпус печи; 5 - верхняя головка печи; 6 — загрузочный торец печи; 7 — слой шихты; 8 - опорные ролики; 9 - привод; 10 - короткофакельная горелка (на мазуте или природном газе); 11 - выпускной торец печи; 12 - пылевая камера; 13 -кулера; 14 - рукавные фильтры
Пылегазовый поток по выходе из печи попадает в пылевую камеру, где оседает грубая пыль (механический унос шихты), через кулера (батарея труб, через стенки которых газ охлаждается наружным воздухом), а затем через рукавные фильтры, где улавливаются возгоны (вельц-оксид). Грубую пыль из пылевой камеры возвращают в оборот (в шихту вельцевания), а вельц-оксид обычно направляют на выщелачивание.
Для нормальной работы вельц-печи необходимо в шихте создавать восстановительную газовую среду, а в газовом потоке над шихтой - окислительную. Кислород в дутье расходуется на газификацию восстановителя, на сжигание коксика как топлива и на окисление возгонов. При полном использовании газообразного кислорода, попадающего в шихту, в газовом потоке не должно быть СО, а содержание СО2 и О2 в потоке связано с объемной и линейной скоростями подаваемого в печь воздуха, а также с температурой газового потока и шихты в печи.
Так как возгоны содержат компоненты с разной способностью к окислению (Znпар окисляется значительно легче, чем PbS, Cd, CdS), то для полноты окисления возгонов, что повышает их качество, приходится повышать в отходящих газах путем подачи подсосом "вторичного" воздуха на выходе газов из печи. Для интенсификации горения коксика и возгонов, а также для повышения в отходящих газах может быть использовано обогащение "первичного' воздуха кислородом.
Влияние состава шихты на процессы и превращения в шихте
Оптимальный режим вельцевания и показатели процесса зависят от химического, фазового и гранулометрического состава шихты. Эти условия имеют важное значение для процесса.
Шихта для вельцевания состоит из цинксодержащего окисленного материала и коксика. Содержащийся в шихте коксик служит топливом, восстановителем и "осушителем" — веществом, впитывающим расплавленную часть шихты. Поэтому количество коксика в шихте больше необходимого для сгорания, и в клинкере содержится "осушающая" часть коксика. Для понижения температуры воспламенения топлива часть коксика (20—30 %) заменяют углем той же крупности — штыбом. Крупность коксика должна быть оптимальной. Мелкие фракции интенсивно горят и выносятся с пылегазовым потоком. Это излишне повышает температуру реакционной массы (оплавляется масса и снижается отгонка металлов), а также ухудшается качество возгонов (повышается их восстановительная способность). Крупный коксик недостаточно активен из-за ограниченной удельной поверхности.
В вельцуемом материале, который мельче коксика, должно быть ограничено содержание основных отгоняемых металлов (Zn, Pb) и их соотношение. Верхний предел содержания цинка и свинца обусловлен временем пребывания материала в печи.
Если в материале много свинца (цинковые кеки, пыль свинцового производства и др.), то его шихтуют с другим материалом, в котором содержимся достаточно цинка, но мало свинца (цинковистые шлаки, песковая фракция цинкового огарка после кислого выщелачивания).
Если вельцуют только цинковые кеки, то расход коксика по отношению к подсушенным кекам (~20 % Н20) составляет 35—50%, крупность коксика 3—6 мм, максимальная температура реакционной массы 1350°С, содержание углерода в клинкере 15—20 %. Если вельцуют только цинковистые шлаки, то расход кокса по отношению к шлакам 45—55 %, крупность коксика до 15 мм, максимальная температура реакционной массы 1100-1200°С. Различия в условиях вельцевания названных материалов обусловлены различием плавкости исходных и образующихся материалов. Важно, чтобы в процессе вельцевания материалы не оплавлялись в значительной степени, в противном случае прекращаются восстановительные реакции в шихте, так как легкий коксик всплывает в более плотном расплаве, т.е. расслаиваются восстановитель и окисленный материал. Поэтому стараются при вельцевании поддерживать шихту "сухой". Однако если велыгуемый материал содержит значительное количество кремнезема (15-20 % SiO2), то повышается образование шлакового расплава и процесс ведут при "полужидком" состоянии шихты: твердая шихта пересыпается, но обильно смочена расплавом. Однако такой режим вельцевания менее производителен.
Одной из причин повышения плавкости реакционной массы является понижение tпл и вязкости цинковистых шлаков вследствие обеднения их по ZnO. Отрицательное влияние этого эффекта на вельцевание уменьшается при добавках в шихту СаО для восполнения удаляемого ZnO.
По характеру процессов, протекающих на различных участках печи, ее можно разделить на следующие зоны: 1) подготовительную, 2) возгоночную и 3) формирования клинкера. В подготовительной зоне в результате теплообмена между газом и шихтой последняя разогревается, из нее удаляется влага, сульфаты частично разлагаются до оксидов (степень десульфуризации достигает 35-50 %) и восстанавливаются до сульфидов, свободная Fe2O3 восстанавливается до Fel-xO, а связанная в ZnO(Fe, Mn)2О3 восстанавливается до (Zn, Fe)0·(Fe, Mn)2O3. Вероятно, в этой зоне коагель кремниевой кислоты, содержащийся в цинковом кеке, взаимодействует с сульфатами цинка и свинца, связывая их в силикатное стекло с частичной десульфуризацией. В зоне формирования клинкера идет догорание коксика и завершаются твердофазные процессы.
Наиболее важные превращения происходят в возгоночной зоне, где участки интенсивной возгонки кадмия, цинка и свинца не совпадают и следуют по ходу шихты в порядке перечисления (рис. 118) в соответствии с нарастанием температуры и кинетикой отгонки их летучих форм: Cd0, Zn0, CdS, PbS.
Рис. 118. Степень возгонки металлов
1 - свинец; 2 — цинк; 3 - кадмий
Возгоночную зону можно расширить введением "вторичного" воздуха в печь, повышением в дутье добавками технического кислорода, введением в шихту смеси коксика с углем (последний имеет более низкую tнач горения), подсушиванием кеков (сокращает L1). Расширение возгоночной зоны позволяет повысить производительность вельц-печи, или степень отгонки металлов, или верхний предел содержания цинка в вельцуемом материале.
Удельную производительность вельц-печей Q выражают или массой переработанной шихты, или массой цинка и свинца в полученных возгонах, отнесенной к 1 м3 внутреннего объема печи в сутки. Производительность по возгонам (возгоночная .способность) QB более характеристична, чем производительность по шихте Qш, так как при прочих равных условиях QB меньше зависит от содержания Zn и РЬ в шихте и в какой-то степени связана с извлечением металлов в возгоны.
Рис. 119. Возгоночная способность вельц-печи θВ, т.е. количество отогнанных цинка и свинца на 1 м3 внутреннего объема печи в сутки, в зависимости от соотношения Zn/Pb (по массе) в цинковом кеке
При благоприятном составе шихты (мало Рb и Сu) для печей с L = 41 м QВ =0,15÷0,2 т/(м3-сут), но при повышении относительного содержания Рb в шихте, т.е. при уменьшении Zn: Pb от 15 до 5, снижается QВ до 0,125, а далее QВ падает еще резче (рис. 119). Производительность печи прямо пропорциональна доле длины возгоночной зоны к общей длине печи, отношению Zn/Pb в шихте, распределенной температуре в возгоночной зоне.
Вельцевание раймовки по условиям и показателям аналогично вельцеванию цинковых кеков. Поведение окисленных цинковых руд при вельцевании может несколько отличаться от поведения кека из-за большей основности образующихся шлаковых расплавов, что приводит к большей плавкости шихт и интенсивному росту железистых настылей. При отмеченных особенностях руд их вельцевание улучшается при подшихтовке цинковистыми шлаками.
Настылеобразование
Главной причиной нарушения процесса вельцевания является образование настылей, снижающих производительность печи и нарушающих нормальное движение шихты в ней. Обобщая сведения, накопленные при изучении настылей, можно заключить следующее.
Настыли в печах размывают путем увеличения содержания коксика в шихте, что позволяет существенно повысить температуру реакционной массы в печи.
Продукты велъцевания
Продуктами вельцевания материалов являются вельц-оксид - промежуточный продукт (перерабатывается гидрометаллургически в цинковом производстве; грубая пыль — оборотный продукт (возвращается на вальцевание); клинкер, который при достаточном содержании меди является полупродуктом (перерабатывается в медном производстве) , а в противном случае является отвальным продуктом и хранится в отвалах предприятия (содержит благородные металлы, свинец и цинк).
- 1 Сырые материалы доменной плавки
- 1.1 Каменноугольный кокс
- 1.1.1 Процесс коксования
- 1.1.2 Устройство коксовых печей и цехов
- 1.1.3 Качество кокса
- 1.2 Железные руды
- 1.2.1 Классификация и генезис железных руд
- 1.2.2 Оценка качества железных руд
- 1.2.3 Важнейшие месторождения железных руд
- 2 Подготовка железных руд к доменной плавке
- 2.1 Современная к схема подготовки руд к доменной плавке
- 2.2 Агломерация железных руд и концентратов
- 2.2.1 Общие вопросы
- 2.2.2 Конвейерные агломерационные машины
- 2.2.3 Реакции между твердыми фазами
- 2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- 2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- 2.2.6 Качество агломерата
- 2.3 Производство железорудных окатышей
- 2.3.1 Получение сырых окатышей
- 2.3.2 Высокотемпературное упрочнение окатышей
- 2.3.3 Получение окатышей безобжиговым путем
- 2.3.4 Металлургические свойства окатышей
- 2.3.5 Сравнение металлургических свойств агломерата и окатышей
- 2.3.6 Производство металлизованных окатышей
- 2.4 Процессы восстановления в доменной печи
- 3 Образование чугуна и его свойства
- 3.1 Интенсификация доменной плавки
- 3.1.1 Нагрев дутья
- 3.1.2 Обогащение дутья кислородом
- 3.1.3 Водяной пар в дутье
- 3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- 3.2 Профиль доменной печи
- 3.2.1 Общее понятие о профиле
- 3.2.2 Основные размеры профиля и его составные части
- 3.1. Производство стали в конвертерах.
- 3.1.1 Бессемеровский процесс.
- 3.1.2 Томасовский процесс.
- 3.1.3 Кислородно-конвертерный процесс.
- 3.3 Производство стали в мартеновских печах.
- 3.4 Производство стали в электрических печах.
- 3.5 Новые методы производства и обработки стали.
- 4 Ферросплавы
- 4.1 Введение
- 4.2 Сырые материалы
- 4.2.1 Требования к рудам и их выбор
- 4.2.2 Восстановители
- 4.2.3 Железосодержащие материалы
- 4.2.4 Флюсы
- 4.3 Основные элементы конструкции рвп
- 5 Технический (металлургический) кремний
- 5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- 5.1.1 Общие положения
- 5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- 5.1.3. Схема технологических зон горна электропечи
- 5.1.4 Влияние примесей шихты на состав технического кремния
- 5.2 Ферросилиций
- 5.2.1 Физико-химические основы получения ферросилиция.
- 5.2.2 Технология производства ферросилиция.
- 6 Сплавы марганца
- 6.1 Применение и состав сплавов марганца
- 6.2 Марганцевые руды и их подготовка к плавке
- 6.3 Производство сплавов марганца
- 6.3.1 Высокоуглеродистый ферромарганец.
- 6.3.2 Силикомарганец
- 6.3.3 Низко- и среднеуглеродистый ферромарганец.
- 6.3.4 Металлический марганец.
- 7 Общие сведения о рудах и концентратах олова
- 7.1 Требования, предъявляемые к рудам и концентратам
- 7.2 Минералы олова
- 7.3 Промышленные типы месторождений олова
- 7.4 Типы оловянных концентратов, поступающих в металлургический передел
- 7.5 Методы обогащения оловянных руд
- 7.6 Влияние типа и вещественного состава руд на их обогатимость
- 7.7 Обогащение россыпей и коренных руд олова
- 7.7.1 Обогащение оловосодержащих россыпей
- 7.7.2 Обогащение оловянных руд коренных месторождений
- 7.8 Доводка оловянных концентратов
- 7.9 Основы современной металлургии олова
- 7.10 Основы теории оловянной восстановительной плавки
- 7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- 7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- 7.10.3 Шлаки оловянной восстановительной плавки
- 7.10.4 Плавка в электрических печах
- 7.10.5 Отечественная практика электроплавки оловянных концентратов
- 7.11 Схема рафинирования олова пирометаллургическим способом
- 8 Производство свинца
- 8.1 Введение
- 8.2 Руды и концентраты
- 8.3 Способы получения свинца
- 8.4 Шихта
- 8.4.1 Состав шихты
- 8.4.2 Приготовление шихты
- 8.4.3 Агломерирующий обжиг свинцовых концентратов
- 8.5 Теория шахтной восстановительной плавки
- 8.5.1 Общие сведения
- 8.5.2 Теоретические основы восстановления окислов металлов
- 8.5.3 Восстановительная способность печи и способы ее регулирования
- 8.5.4 Шлак свинцовой плавки
- 8.5.5 Штейн и шпейза
- 8.5.6 Шахтная восстановительная плавка
- 8.5.7 Топливо
- 8.5.8 Дутье
- 8.6 Реакционная плавка свинца
- 8.6.1 Теоретическая сущность процесса
- 8.6.2 Реакционная плавка в короткобарабанной печи
- 8.7 Электроплавка свинца
- 8.7.1 Реакционная электроплавка свинца
- 8.7.2 Восстановительная электроплавка свинца
- 9.1 Общие сведения и методы получения
- 9.2 Технологические свойства
- 9.3 Области применения
- 9.4 Характеристика рудного цинкового сырья
- 9.5 Основные способы извлечения цинка из сырья
- 9.6 Обжиг цинковых сульфидных концентратов
- 9.6.1 Цели и типы обжига
- 9.6.2 Химизм процессов обжига
- 9.6.3 Обжиг цинковых концентратов для выщелачивания
- 9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- 9.8 У глетермическое восстановление цинка
- 9.8.1 Цели и типы восстановления
- 9.8.2 Химизм восстановления окисленных цинковых материалов
- 9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- 9.10 Дистилляция цинка из агломерата
- 10 Производство меди и никеля
- 10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- 10.1.1 Классификация рудного сырья
- 10.1.2 Медные руды
- 10.1.3 Никелевые руды
- 10.2 Электроплавка окисленных никелевых руд.
- 10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- 10.4 Конвертирование никелевых и медно-никелевых штейнов
- 10.4.1 Термодинамика основных реакций процесса
- 10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- 10.5 Переработка медно-никелевого файнштейна
- 10.5.1 Разделение медно-никелевого файнштепна флотацией
- 10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- 10.6 Восстановительная электроплавка закиси никеля
- 10.7 Способы получения меди из рудного сырья
- 11 Способы получения алюминия
- 11.1 Основы электролиза криолитоглиноземиых расплавов
- 11.2 Сырье и основные материалы
- 11.2.1 Основные минералы и руды алюминия
- 11.2.2 Фториды
- 11.2.3 Огнеупорные и теплоизоляционные материалы
- 11.2.4 Проводниковые материалы
- 11.3 Корректировка состава электролита
- 11.4 Выливка металла
- 11.5 Транспортно-технологическая схема цеха электролиза
- 11.6 Способы очистки отходящих газов