2.9Основные законы, используемые для определения температуры при сварке.
Рассмотрим некоторые общие вопросы нагрева заготовок с использованием различных источников тепла. Чтобы в полном объеме охарактеризовать нагрев свариваемых деталей, необходимо найти температурное поле Т=f(x,y,z,t) нагреваемого тела, где Т – температура любой точки тела, зависящая от координат точки и от времени. При определении температур используют следующие величины, понятия и законы:
– удельная теплоемкость, Дж/г град;
– объемная теплоемкость, Дж/см3.град;
– коэффициент теплопроводности, Дж/см.с.град;
– коэффициент температуропроводности, см2/с;
, , – градиент температуры в данном направлении.
, , – плотность теплового потока в данном направлении.
При нагреве тела тепло передается от более нагретых участков к менее нагретым посредством теплопроводности. Количество тепла , проходящее через элементарную площадку за время , равно:
.
Обычно это равенство выражают в виде:
,(13)
т.е. плотность теплового потока пропорциональна коэффициенту теплопроводности и градиенту температуры. Знак “минус” указывает на то, что тепло передается от участка с большей температурой к участку с меньшей температурой. Равенство (13) называют законом теплопроводности Фурье.
Этот закон справедлив для точек, находящихся внутри тела. Все точки тела на его поверхности находятся в особых условиях, так как через поверхность тело взаимодействует с окружающей средой путем конвективного и лучистого теплообмена.
Для описания конвективного теплообмена используют закон теплообмена Ньютона
, (14)
устанавливающий, что плотность теплового потока на поверхности тела пропорциональна коэффициенту теплообмена и разности температур нагрева и поверхности металла .
Лучистое излучение описывается законом Стефана-Больцмана, согласно которому плотность теплового потока излучения пропорциональна четвертой степени температуры тела:
,(15)
где С – коэффициент, зависящий от состояния поверхности тела (степени черноты) и от температуры.
При температурах К основная часть теплоты приходится на долю конвективного теплообмена. В случае более высоких температур существенное значение приобретает лучистый теплообмен.
При определении температуры используют также уравнение теплопроводности, являющееся основным в области теплофизики. Оно устанавливает связь между температурой, координатами и временем применительно к твердому телу, когда тепло передается согласно закону Фурье. Его формулирование основано на законе сохранения энергии для элементарного объема внутри тела.
Уравнение теплопроводности для стержня малого сечения, когда тепло передается в одном направлении, имеет вид:
,(16)
где: – удельная объемная мощность источника тепла внутри тела (например, тепло, выделяющееся благодаря прохождению электрического тока).
Если тепло передается по двум или трем направлениям, то уравнение теплопроводности соответственно будет иметь вид для пластины:
(17)
и для объемного тела:
. (18)
Если температура не изменяется во времени (установившееся температурное поле), то ; если отсутствует тепловыделение внутри металла, то . В этих случаях уравнение теплопроводности упрощается.
Уравнение теплопроводности имеет бесчисленное множество решений. Для решения конкретной задачи уравнение дополняется граничными и начальными условиями (условиями однозначности). Тогда задача будет иметь единственное решение. Реальные задачи расчета температуры применительно к процессам сварки отличаются высокой степенью сложности по следующим причинам:
1. Теплопроводность и теплоемкость материала и изменяются в значительных пределах, так как интервал температур очень широк (от 0 до и выше), в связи с чем уравнение теплопроводности становится нелинейным.
2. Граничные условия очень сложны в связи с тем, что по мере нагрева условия на поверхности сильно изменяются.
3. Задачи, как правило, двухмерны или трехмерны.
4. Имеются фазовые превращения, в результате которых свойства нагреваемого металла изменяются скачкообразно.
В связи с этим большинство задач решают с рядом упрощающих предположений, часто применяются численные методы с использованием ЭВМ.
Сложность таких задач не позволяет рассмотреть их в пределах данного курса. Ограничимся качественной оценкой температурных полей для различных случаев.
- Конспект лекций по сварке доцента каф. 104 Варухи н. А.
- 1Введение
- 1.1Краткие сведения из истории сварки.
- 1.2Классификация сварки.
- Определение сварки по госТу.
- Определение пайки по госТу.
- 2Процессы нагрева при сварке.
- 2.1Общие сведения о нагреве при сварке и источниках нагрева.
- 2.2Пламя газовой горелки.
- 2.3Электрическая дуга.
- 2.4Струя плазменной горелки.
- 2.5Электронный луч.
- 2.6Луч лазера.
- 2.7Трение как источник тепла при нагреве.
- 2.8Джоулево тепло при сварке.
- 2.9Основные законы, используемые для определения температуры при сварке.
- 3Виды сварки термического класса
- 3.1Дуговая сварка (дс).
- 3.1.1Классификация дуговой сварки.
- 3.1.2Дуга как источник нагрева при дс.
- 3.1.3Вольтамперная характеристика дуги (вахд).
- 3.1.4Источники питания (ип) для дуговой сварки.
- 3.1.5Требования к ип
- 3.1.6Источники питания переменного тока для рдс (сварочные трансформаторы).
- Сварочный трансформатор с магнитным шунтом.
- Сварочный трансформатор с подвижными вторичными обмотками.
- 3.1.7Источники постоянного тока для дуговой сварки.
- 3.2Дуговая сварка в среде защитных газов
- 3.2.1Виды газовой защиты
- Защитные свойства различных газов
- 3.2.2Электродные сварочные материалы
- 3.2.3Cварка в инертных газах
- Основные параметры аргонодуговой сварки
- Достоинства и недостатки аргонодуговой сварки
- Область применения аргонодуговой сварки
- Дуговая сварка в среде гелия
- 3.2.4Сварка в активных газах Дуговая сварка в среде углекислого газа
- 3.2.5Атомно-водородная сварка
- 3.3Плазменная сварка Сущность плазменной сварки, схема плазмотрона
- Область применения плазмотронов, достоинства и недостатки плазменной сварки
- 3.4Электрошлаковая сварка
- 3.4.1Параметры режима электрошлаковой сварки
- 3.4.2Оборудование для электрошлаковой сварки
- 3.4.3Достоинства электрошлаковой сварки
- 3.4.4Недостатки электрошлаковой сварки
- 3.4.5Область применения электрошлаковой сварки
- 3.5Электронно-лучевая сварка
- 3.5.1Оборудование для электронно-лучевой сварки
- 3.5.2Достоинства электронно-лучевой сварки
- 3.5.3Недостатки электронно-лучевой сварки
- 3.6Лазерная сварка
- 3.6.1Свойства лазерного излучения
- 3.6.2Сварочные установки с твердотельным лазером
- 3.6.3Сварочные установки с газовым лазером
- 3.6.4Достоинства и недостатки лазерной сварки
- 3.6.5Область применения лазерной сварки и резки
- 4Ермомеханический класс
- 4.1Контактная сварка
- 4.2Контактная точечная сварка
- 4.2.1Основные параметры режима точечной сварки
- 4.2.2Влияние основных параметров режима точечной сварки на прочность сварной точки
- 4.2.3Шунтирование тока
- 4.2.4Разновидности точечной сварки
- 4.2.5Оборудование для точечной сварки
- 4.2.6Низкочастотные машины
- 4.2.7Конденсаторные машины для точечной сварки
- 4.2.8Клеесварные соединения
- 4.3Kонтактная шовная сварка
- 4.3.1Требования к конструированию узлов и деталей под контактную точечную и шовную сварку
- 4.3.2Особенности точечной и шовной сварки отдельных металлов и сплавов
- 4.4Контактная стыковая сварка
- 4.4.1Стыковая сварка сопротивлением
- 4.4.2Стыковая сварка оплавлением
- 4.4.3Машины для стыковой сварки
- 4.4.4Проектирование узлов и деталей под стыковую сварку
- 4.4.5Конструкция и проектирование оснастки
- 4.5Диффузионная сварка
- 4.5.1Технологические особенности диффузионной сварки.
- 4.5.2Защитные среды при диффузионной сварке
- 4.5.3Особенности диффузионной сварки различных материалов
- 4.5.4Оборудование для диффузионной сварки
- 4.6Индукционно-прессовая сварка
- 5Механические виды сварки
- 5.1Холодная сварка.
- 5.2Сварка трением.
- 5.3Ультразвуковая сварка.
- 5.2. Схема установки для сварки ультразвуком: 1 – магнитострикционный преобразователь; 2 – волновод; 2 – наконечники; 4 – свариваемые детали.
- 5.4Сварка взрывом.
- 5.5Магнитоимпульсная сварка.
- 6.1Сущность процесса пайки металлов
- 6.2Припои для пайки.
- 6.3Способы пайки.
- 6.3.1Способы по формированию паяного шва. Капиллярная пайка готовым припоем.
- Контактно - реактивная пайка.
- Диффузная пайка.
- Реактивно-флюсовая пайка.
- Композиционная пайка.
- Прессовая пайка.
- Некапиллярная пайка
- 6.3.2Способы пайки по устранению окисной пленки Флюсовая пайка
- Безфлюсовая пайка
- Абразивная пайка
- 6.3.3Способы пайки по нагреву Пайка в печах
- Пайка в соляных электрических печах-ваннах.
- Пайка погружением в расплавленные припои.
- Газопламенная пайка.
- Пайка индукционная.
- Электродуговая пайка.
- Пайка световым и инфракрасным лучами.
- Пайка лучом лазера.
- Пайка электронным лучом
- Пайка паяльником.
- Электролитная пайка
- Экзотермическая пайка
- 7Контроль качества сварных соединений
- 7.1Методы контроля и управления качеством сварных соединений.
- 7.1.1Факторы качества сварных соединений.
- 7.1.2Типы и виды дефектов.
- 7.1.3Классификация методов контроля.
- 7.2Физические методы неразрушающего контроля.
- 7.2.1Радиационные методы контроля. Физические основы и классификация методов.
- 7.2.2Радиографические методы контроля.
- 7.2.3Радиоскопические методы контроля.
- 7.2.4Радиометрические методы контроля.
- 7.3Ультразвуковые методы контроля.
- 7.3.1Физические основы и классификация методов.
- 7.3.2Особенности ультразвукового контроля сварных соединений.
- 7.4Магнитные и электромагнитные методы контроля.
- 7.4.1Физические основы и классификация методов.
- 7.4.2Магнитные методы контроля.
- 7.5Капиллярные методы контроля.
- 7.6Методы контроля сварных соединений течеисканием.
- 7.7Статистические методы управления качеством сварки.