13. Схема абсорбционной холодильной машины. Холодильный цикл.
Абсорбционная холодильная машина (также абсорбционная бромистолитиевая холодильная машина, абсорбционный чиллер или АБХМ) — промышленная холодильная установка, предназначена для отбора и удаления избыточного тепла и поддержания заданного оптимального температурного и теплового режимов при работе различного рода производственного оборудования, технологических устройств, инструмента, оснастки, а также технологических процессов, связанных с повышенными тепловыми нагрузками. В качестве хладагента в них используется вода в растворе бромида лития.
Холодильный цикл - обратный круговой термодинамический процесс, используемый для искусственного охлаждения. Кроме основного теоретического холодильного цикла холодильных машин всех систем существуют усложненные циклы (многоступенчатые, каскадные, с регенерацией теплоты и др.), назначение которых - повышение экономичности, расширение интервала температур и т. д.
Так же, как и в компрессионном, в абсорбционном холодильнике охлаждение рабочей камеры происходит за счёт испарения хладагента (чаще всего аммиака). В отличие от компрессионного холодильника, циркуляция хладагента происходит за счёт его растворения (абсорбции) в жидкости, обычно в воде. В одной единице объёма воды может растворено до 1000 ед. объёма аммиака. Насыщенный раствор аммиака из абсорбера поступает в генератор (десорбер), а затем в дефлегматор, где разлагается на аммиак и воду. Газообразный аммиак сжижается в конденсаторе и снова поступает в испаритель, а очищенная от аммиака вода поступает в абсорбер.
Для циркуляции воды в системе могут применяться разнообразные приспособления, например струйные насосы, что позволяет обойтись без движущихся частей. В систему холодильника добавляется также инертный к компонентам системы газ, например водород. В этом случае давление во всей системе почти одинаково, а испарение хладагента происходит за счёт изменения парциального давления.
Помимо аммиака и воды, могут использоваться и другие пары веществ — например, раствор бромистого лития, ацетилен и ацетон. Преимущества абсорбционных холодильников — бесшумность работы, отсутствие движущихся механических частей, возможность работы от нагрева прямым сжиганием топлива, недостатки — плохие удельные показатели хладопроизводительности на единицу объёма, чувствительность к положению в пространстве, а также недолговечность: трубопроводы такого холодильника относительно быстро засоряются продуктами коррозии. Кроме того, холодильный агрегат содержит ядовитый аммиак и горючий водород. Такие холодильники практически не используются в современных квартирах, но распространены в местах, где нет круглосуточного доступа к электричеству: например в домах на колёсах, где они работают от электричества на стоянках в кемпингах, а в пути работают от сжигания природного газа. Кроме того, абсорбционные агрегаты часто используются в промышленных холодильниках в тех случаях, когда более выгодно использовать энергию сгорания газа, а не электричество. Наиболее эффективно их использование в промышленности совместно с когенерационными установками, что позволяет утилизировать избыточное тепло и повысить КПД. В этом случае речь идет о так называемой тригенерации. Помимо этого, абсорбционные машины позволяют использовать сбросное тепло.
Холодильный цикл - обратный круговой термодинамический процесс, используемый для искусственного охлаждения. Кроме основного теоретического холодильного цикла холодильных машин всех систем существуют усложненные циклы (многоступенчатые, каскадные, с регенерацией теплоты и др.), назначение которых - повышение экономичности, расширение интервала температур и т. д.
14. Схема и принцип работы термоэлектрических холодильников.
В основе работы термоэлектрического холодильника лежит Эффект Пельтье — когда при прохождении тока через контакт двух разнородных проводников в направлении контактной разности потенциалов происходит перенос тепловой энергии так, что один из этих "разнородных" проводников охлаждается, а второй нагревается за счет тепловой энергии от первого и электрической энергии прошедшего электрического тока.
Поглощение теплоты в месте контакта проводников объясняется переносом электрическим током зарядов из вещества, где они имеют энергию, в вещество с более высокой энергией зарядов. Перешедшие заряды повышают свою энергию за счет энергии кристаллической решетки вещества, вызывая поглощение теплоты. В противоположном контакте заряды с высокой энергией передают избыток кристаллической решетке вещества, в которое они перешли, что вызывает выделение теплоты. На этом принципе основано несколько видов отечественных холодильных приборов различного назначения, в частности, шкаф-термостат для хранения свежих овощей и фруктов, который в ближайшие годы должен появиться на прилавках магазинов. Кстати, термоэлектрический холодильник позволяет в одной и той же емкости получать в зависимости от переключения питания как холод (в теплое время года), так и тепло, например, для подогрева продуктов.
Холодильник на элементах Пельтье бесшумен, надёжен и долговечен, но большого распространения не получил из-за дороговизны охлаждающих термоэлектрических элементов. Еще одним минусом является зависимость холодопроизводительности от температуры окружающей среды. Тем не менее, сумки-холодильники, небольшие автомобильные холодильники и кулеры питьевой воды часто делаются с охлаждением от элементов Пельтье.
Эффективность применения термоэлектрических холодильников по сравнению с другими типами холодильных машин возрастает тем больше, чем меньше величина охлаждаемого объема. Поэтому наиболее рационально в настоящее время использование термоэлектрического охлаждения для холодильников бытового назначения, в охладителях пищевых жидкостей, кондиционерах воздуха, кроме того, термоэлектрическое охлаждение успешно используется в химии, биологии и медицине, метрологии, а также в торговом холоде (поддержание температуры в холодильных камерах), холодильном транспорте (рефрижераторы), и др. областях.
- 1. Назначение основных видов техники предприятий сервиса, её классификация и тенденции развития.
- 2. Основы технологий охлаждения и замораживания продуктов питания.
- 3. Естественное и искусственное охлаждение. Способы искусственного охлаждения.
- 4. Термодинамические основы процессов в холодильных машинах.
- 5. Схема компрессионной холодильной машины. Холодильный цикл.
- 6. Классификация рабочих тел, используемых в компрессионных холодильниках.
- 7. Агрегатные состояния рабочего тела в элементах компрессионного холодильника.
- 8. Классификация холодильных машин.
- 9. Конструкции современных компрессионных холодильников.
- 10. Назначение, устройство и принципы работы агрегатов компрессионного холодильника.
- 11. Технологии и материалы, используемые в производстве холодильников.
- 12. Технические, эксплуатационные и потребительские характеристики современных моделей холодильников.
- 13. Схема абсорбционной холодильной машины. Холодильный цикл.
- 15. Основные виды использования термоэлектрических устройств.
- 16. Сравнительный анализ компрессионных, абсорбционных и термоэлектрических холодильников.
- 17. Основы технологии кондиционирования воздуха в помещении.
- 18. Изменение состояния воздуха в процессе кондиционирования.
- 19. Устройство и принцип работы автономного кондиционера.
- 20. Основы технологии стирки белья.
- 21. Этапы моющего процесса.
- 22. Этапы стирки текстильных материалов.
- 23. Технология моющего процесса. Моющие средства.
- 24. Классификация стиральных машин.
- 25. Устройство и принцип работы активаторной стиральной машины.
- 26. Устройство и принцип работы «пузырьковой» активаторной стиральной машины.
- 27. Устройство и принцип работы ультразвуковой стиральной машины.
- 28. Устройство и принцип работы полуавтоматической активаторной стиральной машины.
- 29. Устройство и принцип работы центрифуг для отжима белья.
- 30. Устройство и принцип работы барабанной стиральной машины.
- 31. Основные технологические процессы в автоматических стиральных машинах.
- 32. Технологии и материалы, используемые в производстве стиральных машин.
- 33. Технология струйной обработки посуды в машине.
- 34. Классификация, конструкции и характеристики современных моделей посудомоечных машин.
- 35. Технологии уборки, используемые в помещениях.
- 36. Процесс движения воздуха в тракте электропылесоса.
- 37. Классификация, конструкции и характеристики современных моделей пылесосов.
- 38. Системы фильтрации пылесосов и используемые материалы.
- 39. Классификация, конструкции и характеристики современных моделей полотеров.
- 40. Центральные системы пылеудаления - назначение, принцип работы и конструкция.
- 41. Физические основы электронагрева.
- 42. Конструкции и материалы электронагревательных элементов.
- 43. Классификация бытовых электронагревательных приборов.
- 44. Конструкции и характеристики современных электроплит.
- 45. Материалы, используемые в производстве электроплит.
- 46. Основные технологии электроотопления помещений.
- 47. Устройство и принцип работы конвектора.
- 49. Устройство и принцип работы камина.
- 50. Устройство и принцип работы радиатора.
- 51. Технологии и материалы, используемые в производстве приборов электроотопления.
- 52. Современные технологии электронагрева.
- 53. Схемы, конструкции и характеристики емкостных электроводонагревателей.
- 55. Технологии изменения качества воздуха в помещении.
- 56. Классификация, конструкции, принцип работы и характеристики вентиляторов.
- 57. Классификация, конструкции, принцип работы и характеристики воздухоочистителей.
- 58. Классификация, конструкции, принцип работы и характеристики приборов индивидуального пользования.
- 59. Физические основы нагрева свч энергией.
- 60. Основы технологии обработки продуктов свч энергией.
- 61. Современные конструкции и характеристики свч печей.
- 62. Расчет потребности предприятий в технике.
- 63. Расчет электропотребления холодильника.
- 64. Расчет технико-экономических показателей техники в сфере сервиса.