Характеристика газоперекачивающего агрегата
В качестве газоперекачивающих агрегатов применяются поршневые газомотокомпрессоры или центробежные нагнетатели.
Поршневые газомотокомпрессоры представляют собой агрегат, в котором объединены силовая часть (привод) и компрессор для сжатия газа. Принцип работы поршневого компрессора такой же, как у поршневого насоса.
Наиболее распространёнными типами газомотокомпрессоров являются 10ГК, 10ГКН, МК-10 и ГПА-5000, имеющие подачу от 0,8 до 10,0 млн.м³/сут. и развивающие давление 5,5 МПа. Отличаются высокой эксплуатационной надёжностью, способностью работать в широком диапазоне рабочих давлений, возможностью регулировать подачу за счёт изменения «вредного» пространства и частоты вращения.
Преимущественно применяются на трубопроводах по перекачке нефтяного газа и на станциях подземного хранения газа.
Заводы – производители: УТМЗ – Уральский турбомоторный завод им. К.Е.Ворошилова; НЗЛ – Невский машиностроительный завод им. В.И.Ленина. Модели зарубежных фирм «Кларк», «Купер – Бессемер», «Вортингтон» и др.
На магистральных газопроводах пропускной способностью более 10 млн.м³/сут. применяют центробежные нагнетатели с газотурбинным приводом или электроприводом.
Наиболее распространённым приводом является газотурбинный. В состав газотурбинной установки входят: турбодетандер, редуктор, воздушный компрессор, блок камер сгорания, турбины высокого и низкого давлений. Турбодетандер является пусковым двигателем установки, работающим на природном газе. Расчётная продолжительность пуска агрегата из холодного состояния – 15мин. Турбодетандер через редуктор запускает в работу воздушный компрессор. Атмосферный воздух засасывается компрессором и сжимается в нём до рабочего давления. Далее сжатый воздух направляется в блок камер сгорания, где он нагревается за счёт сжигания природного газа. Продукты сгорания направляются в газовую турбину (сначала высокого, затем низкого давления), где они расширяются. Процесс расширения сопровождается падением давления и температуры, но увеличением скорости потока газа, используемого для вращения ротора турбины. Отработавший газ через выхлопной патрубок выходит в окружающую среду.
На газопроводах применяются газовые турбины мощностью от 2500 до 25000 кВт.
Начиная с 1974 г. на отечественные магистральные газопроводы в качестве привода центробежных нагнетателей начали применять авиационные двигатели, отработавшие свой ресурс. После относительно небольшого числа работы их по соображениям безопасности полётов снимают с самолётов, однако они способны ещё длительное время с большой надёжностью работать на земле. В конце 90-х годов ХХ века начались совместные разработки новых газоперекачивающих агрегатов с использованием авиационных двигателей специально разработанных для привода центробежных нагнетателей. Такая разработка велась между ОАО «Газпром» и ОАО «Пермские моторы», результатом стало создание ГПА 25Р ПС – 90 «Урал». Несколько данных установок находятся в опытной эксплуатации ООО «Пермтрансгаз» ОАО «Газпром». Мощность ГПА составляет 25000 кВт.
В последние годы в качестве привода центробежных нагнетателей всё шире используются электродвигатели АЗ-4500-1500, СТМ-4000-2, СТД-4000-2, СДСЗ-4500-1500. Они подключаются к нагнетателям через повышающий редуктор.
Характеристикой центробежного компрессора называют зависимость отношения давлений (степени повышения давлений)ξ, политропического коэффициента мощности (к.п.д.) ηпол. и внутренней мощности Ni от расхода Q при различной частоте вращения ротора n. При уменьшении расхода давление, развиваемое нагнетателем, растёт до определённого предела, который называется критическим давлением pкр. По мере дальнейшего уменьшения расхода начинается зона неустойчивой работы, или зона помпажа. Помпаж сопровождается специфическим шумом, резким повышением вибрации и может привести к аварии.
В реальных условиях нагнетатель, приводимый от ГТУ, работает в определённом диапазоне частоты вращения. Поэтому характеристики нагнетателя строят при различной частоте вращения. Заводы обычно приводят зависимость между его основными параметрами Q, p, N, η и n. Эти характеристики снимают при определённых параметрах рабочей среды, чаще всего – воздуха. Чтобы характеристики были пригодны для природных газов различного состава, их приводят к фиксированным, целесообразно выбранным условиям. Параметры приведения:
- газовая постоянная Rпр 490 Дж/кг·К;
- температура на входе нагнетателя Тв пр =288Кº;
- коэффициент сжимаемости Zв пр = 0,91;
- частота вращения nпр = nн (номинальная)
Обычно расчётные точки на характеристиках нагнетателя принимают с таким запасом по устойчивости, чтобы на всех рабочих режимах сохранялось 10%-ное удаление (по расходу) от границы помпажа.
- Материалы для подготовки
- 1. Классификация трубопроводов
- 4. Состав магистрального газопровода Основные и вспомогательные сооружения магистральных трубопроводов
- 68.Состав и технологическая схема компрессорной станции газокомпрессорные станции. Основное оборудование и назначение
- Система оборотного водоснабжения и охлаждения масла
- Система маслоснабжения
- Система технологического газа
- Система топливного и пускового газа
- Система импульсного газа
- Система пожаробезопасности
- Система вентиляции, кондиционирования и отопления
- Комплекс средств контроля и автоматики
- Система электроснабжения
- Система сжатого воздуха для технических целей
- Система промышленной канализации
- Грузоподъёмные механизмы
- Характеристика газоперекачивающего агрегата
- 74.Очистка полости и испытание трубопроводов очистка внутренней полости и испытание трубопровода на прочность и плотность.
- Продувка воздухом или газом
- Промывка водой
- Очистка протаскиванием очистного устройства
- Особенности очистки полости при отрицательных температурах
- Испытание на прочность и проверка на герметичность
- Гидравлическое испытание
- Пневматическое испытание
- Испытания при отрицательных температурах с использованием жидкостей с пониженной температурой замерзания
- Удаление воды после испытаний
- Параметры
- 78.Надземные хранилища нефти. Резервуары вертикальные стальные (рвс). Нефтегазохранилища. Резервуары
- 76.Газгольдеры Газгольдеры
- Сухие газгольдеры
- Газгольдеры постоянного объёма
- 80.Подземные хранилища газа. Принцип организации подземного хранения газа Подземные хранилища нефти, нефтепродуктов и газа
- Хранилища в соляных пластах
- Шахтные хранилища
- Подземные хранилища газа
- 51.Структура технологической карты при производстве работ и ее виды
- 19.3. Технологические карты.
- 82.Нефтеперекачивающие станции, назначение, состав нефтеперекачивающие станции.
- Основное оборудование перекачивающей станции
- Техническая характеристика асинхронных электродвигателей
- Техническая характеристика синхронных электродвигателей
- Вспомогательное оборудование перекачивающих станций
- Система смазки
- Техническая характеристика шестеренчатых насосов
- Система охлаждения
- Система сбора и откачки утечек
- Резервуарный парк перекачивающей станции
- Водоснабжение и канализация перекачивающих станций
- Система канализации
- Вентиляция
- Кратность обмена воздуха в 1ч
- Теплоснабжение
- Электроснабжение
- Трубы для магистральных трубопроводов материалы для сооружения газонефтепроводов.
- Стали для труб газонефтепроводов
- Углеродистые стали
- Низколегированные феррито-перлитные стали
- Стали контролируемой прокатки.
- Конструкции труб и их применение.
- История развития трубопроводного транспорта нефти и газа в России. Нефтяная и газовая промышленность россии.
- Дореволюционный период.
- Период до Великой Отечественной Войны.
- Период Великой Отечественной Войны.
- Период до распада ссср.
- Современный период.
- Развитие газовой промышленности.
- Период зарождения газовой промышленности.
- Период становления газовой промышленности.
- Период до распада ссср.
- Современный период.