2.5. Основы расчета изгибаемых элементов
Для изгибаемых элементов (балок), у которых пролет превышает высоту поперечного сечения (в 5 и более раз) изменение деформаций по высоте
сечения происходит по линейному закону, напряжения распределяются только до предела текучести ƠT (рис.2.1).
Напряжения в точках, находящихся на расстоянии “y” от нейтральной оси, определяются по формуле Ơ = М y / Ix ,где - изгибающий момент в рассматриваемом сечении балки; Ix - момент инерции сечения.
Максимальное напряжение возникает когда :Ơmax. = М(h/2)/Ix. Отношение момента инерции Ix к расстоянию от нейтральной оси до крайней
Точки сечения называетсямоментом сопротивления Wx = Ix(2/h) , тогда Ơmax = M/Wx..
Для проверки прочности изгибаемых элементов, работающих в пределах упругих деформаций, необходимо, чтобы максимальные нормальные и касательные напряжения в балке от расчетной нагрузки не превосходили соответствующих расчетных сопротивлений.
Рис.2.1. Изменение эпюры напряжений в изгибаемом элементе при развитии
пластических деформаций в материале
; (2.10)
τ = Q S /I t≤ Rs c.
где и- максимальный момент и поперечная сила в балке от расчетной нагрузки;- момент сопротивления нетто поперечного сечения балки, в случае несимметричного сечения балки выбираетсяWnmin = Ix / y max ;- статический момент сдвигающейся части сечения относительно нейтральной оси; I- момент инерции сечения балки;- толщина стенки.
По второму предельному состоянию наибольший прогиб балки от нагрузки при эксплуатации сравнивается с предельной величиной указанной в нормах, либо в задании на проектирование.
Величина прогиба зависит от расчетной схемы балки, а предельный прогиб – от назначения. Например, для главной балки рабочей площадки промздания, имеющей один пролет и шарнирные опоры, загруженной равномерно распределенной нагрузкой, проверка прогиба производится по формуле:
5
fmax = ----- (qn l4 / E I) ≤ l / 400 (2.11)
384
где - максимальный прогиб балки;- нормативная нагрузка на балку;- прогиб балки;E I- изгибная жесткость балки; 400 – норма прогиба балки.
Формула для проверки прочности изгибаемых элементов при наличии пластических деформаций (пластический шарнир) получается из выражения (2.10) путем замены на, т.е.
M / (c Wn) ≤ Ry γc или M / Wn ≤ cRy γc (2.12).
Сравнивая это выражение с (2.10) видим, что формально учет пластических деформаций сводится к повышению расчетного сопротивления умножением на величину “c”, коэффициент, характеризующий резерв несущей способности изгибаемого элемента, обусловленный пластической работой металла, и определенный по формуле для балок двутаврового сечения, как наиболее распространенного в изгибаемых элементах
, (2.13)
где - отношение площадей поперечного сечения пояса и стенки балки.
Для прокатных двутавров различных типов , чему соответствует значениес = 1,1 .
Для составных двутавров (рис.2.2,в). коэффициент“c” вычисляется по формуле (2.13).
Для прямоугольного сечения, когда площадь поясов балки можно приравнять к нулю –с = 1,5 (рис.2.2,б).
Устремляя площадь стенки к нулю (рис.2.2,е) из двутавра получаем расчетные сечения фермы или балки с гибкой стенкой, тогда с = 1.
Наибольшим пластическим резервом будет обладать балка с поперечным сечением (см. рис.2.2,а), для нее с = 2.
Практически выбор формы поперечного сечения изгибаемых элементов зависит от многих факторов, среди которых главным является расход металла, так как его стоимость составляет 80% общей стоимости конструкции.
Кроме нормальных напряжений Ơ в балках возникают и касательные напряжения τxy, зависящие от поперечной силы и локальных напряженийƠy в местах передачи на балку сосредоточенных нагрузок. Например, для балок, загруженных сосредоточенными силами по пролету (рис.2.3,а) определяющей
будет компонента Ơx. При большей сосредоточенной нагрузке на балке с малым пролетом (рис.2.3,б) определяющим будет напряжение τxy.. Распределение Ơпр
Рис.2.2. Зависимость коэффициента “c” от формы поперечного сечения
изгибаемого элемента
по высоте балки в упругой стадии будет существенно отличаться от предыдущего случая, а при дальнейшем увеличении нагрузки вплоть до появления пластического шарнира (Ơпр = ƠT) обусловит более развитую пластическую область вблизи нейтральной оси.
При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:
(2.14)
где 1,15 – коэффициент, учитывающий развитие пластических деформаций в балке [аналогично коэффициенту “c” в формуле (2.12)].
При изгибе относительно двух главных осей инерции поперечного сечения
балки (x, y) – косом изгибе - допускается проверку прочности.производить по упрощенной формуле
Mx/(cxWx.n.min)+My/(cy Wy.n.min) ≤ Ry γc при τ≤ 0.5Rs (2.15)
где идаются в зависимости от формы сечения (см.прил.1);- зависит от величины.
Рис. 2.3. Распределение пластических деформаций в двутавровой балке при сложном напряженном состоянии.
- Чугунная арка, пролетом 30м применена в перекрытии
- Б) газгольдер мокрый
- Раздел 1. Элементы металлических конструкций
- Номенклатура и область применения металлических конструкций
- 1. Условия эксплуатации.
- Свойства и работа строительных сталей и алюминиевых сплавов
- 1.3. Классификация сталей
- 1.4. Выбор сталей для строительных конструкций.
- 1.5. Влияние различных факторов на свойства стали
- 1.6. Виды разрушений
- 1.7. Работа металла под нагрузкой
- Р а з д е л 2. Основы расчета металлических конструкций
- 2.1. Основные понятия и определения
- 2.2. Основные положения расчета металлических конструкций
- 2.3.Классификация нагрузок и их сочетаний
- 2.4. Напряженное и деформированное состояние центрально нагруженных элементов
- 2.5. Основы расчета изгибаемых элементов
- 2.6. Основы расчета центрально сжатых стержней
- 2.7. Основы расчета на прочность стержней, работающих на сжатие или растяжение с изгибом
- 2.8. Основы расчета на устойчивость внецентренно сжатых и сжато - изогнутых стержней
- 2.9. Расчет элементов металлических конструкций при воздействии переменных нагрузок (проверка на усталость)
- Раздел 3. Сортамент
- 3.1. Характеристика основных профилей сортамента
- 3.2. Листовая сталь
- 3.5. Двутавры
- 3.6. Тонкостенные профили
- 3.7. Трубы
- 3.8. Холодногнутые профили
- 3.9. Различные профили и изделия из металла, применяемые в строительстве
- 3.10. Профили из алюминиевых сплавов
- 3.11. Правила использования профилей в строительных конструкциях
- Раздел 4. Сварные соединения
- Виды сварки, применяемые в строительстве
- Виды сварных швов и соединений
- Т а б л и ц а 4.1. Виды сварки в зависимости от толщины шва (двусторонняя или с подваркой корня)
- Конструирование и работа сварных соединений
- Расчет сварных соединений
- Т а б л и ц а 4.2. Материалы для сварных соединений стальных конструкций
- Раздел 9. Фермы
- 9.1 Классификация ферм и область их применения
- Расстояние между соседними узлами поясов называется панелью
- – Пролетом (l). Пояса ферм работают на продольные усилия и момент (аналогично поясам
- 9.2. Компоновка конструкций ферм
- (Б) укрупнительных стыках
- В покрытиях зданий из-за большого числа поставленных рядом плоских стропильных ферм решение усложняется, поэтому фермы, связанные между собой только прогонами могут потерять устойчивость.
- 9.3. Типы сечений стержней ферм
- 9.4. Расчет ферм
- 9.5. Определение усилий в стержнях ферм
- 9.6. Определение расчетной длины стержней
- 9.7. Предельные гибкости стержней
- 9.8. Подбор сечений элементов ферм
- 9.9. Подбор сечений сжатых элементов
- Т а б л и ц а 9.1. Подбор сечений стержней легких ферм
- 9.10. Подбор сечения растянутых элементов
- 9.12. Подбор сечения стержней по предельной гибкости
- 9.14. Конструкция легких ферм
- Резку стержней решетки производят, нормально к оси стержня, для крупных стержней допускают косую резку с целью уменьшения размеров фасонки.
- 9.15. Фермы из одиночных уголков
- 9.17. Ферма с поясами из широкополочных тавров
- 9.19. Укрупнительный стык стропильной фермы из парных уголков а – на сварке; б – на болтах; 1 – линия сгиба стыковой накладки
- .9.20. Опорные узлы ферм из парных уголков
- Т а б л и ц а 9.3. Значения коэффициента ξ
- Толщину стенок стержней принимать не менее 3 мм. Применение профилей одинаковых размеров сечения, отличающихся толщиной стенок менее чем
- Узлы ферм из открытых гнутых профилей можно выполнять без фасонок.
- 9.20. Оформление рабочего чертежа легких ферм (кмд)
- 9.21. Узлы тяжелых ферм