logo
Самое необходимое по МК

2.5. Основы расчета изгибаемых элементов

Для изгибаемых элементов (балок), у которых пролет превышает высоту поперечного сечения (в 5 и более раз) изменение деформаций по высоте

сечения происходит по линейному закону, напряжения распределяются только до предела текучести ƠT (рис.2.1).

Напряжения в точках, находящихся на расстоянии y от нейтральной оси, определяются по формуле Ơ = М y / Ix ,где - изгибающий момент в рассматриваемом сечении балки; Ix - момент инерции сечения.

Максимальное напряжение возникает когда :Ơmax. = М(h/2)/Ix. Отношение момента инерции Ix к расстоянию от нейтральной оси до крайней

Точки сечения называетсямоментом сопротивления Wx = Ix(2/h) , тогда Ơmax = M/Wx..

Для проверки прочности изгибаемых элементов, работающих в пределах упругих деформаций, необходимо, чтобы максимальные нормальные и касательные напряжения в балке от расчетной нагрузки не превосходили соответствующих расчетных сопротивлений.

Рис.2.1. Изменение эпюры напряжений в изгибаемом элементе при развитии

пластических деформаций в материале

; (2.10)

τ = Q S /I t≤ Rs c.

где и- максимальный момент и поперечная сила в балке от расчетной нагрузки;- момент сопротивления нетто поперечного сечения балки, в случае несимметричного сечения балки выбираетсяWnmin = Ix / y max ;- статический момент сдвигающейся части сечения относительно нейтральной оси; I- момент инерции сечения балки;- толщина стенки.

По второму предельному состоянию наибольший прогиб балки от нагрузки при эксплуатации сравнивается с предельной величиной указанной в нормах, либо в задании на проектирование.

Величина прогиба зависит от расчетной схемы балки, а предельный прогиб – от назначения. Например, для главной балки рабочей площадки промздания, имеющей один пролет и шарнирные опоры, загруженной равномерно распределенной нагрузкой, проверка прогиба производится по формуле:

5

fmax = ----- (qn l4 / E I) ≤ l / 400 (2.11)

384

где - максимальный прогиб балки;- нормативная нагрузка на балку;- прогиб балки;E I- изгибная жесткость балки; 400 – норма прогиба балки.

Формула для проверки прочности изгибаемых элементов при наличии пластических деформаций (пластический шарнир) получается из выражения (2.10) путем замены на, т.е.

M / (c Wn) ≤ Ry γc или M / Wn cRy γc (2.12).

Сравнивая это выражение с (2.10) видим, что формально учет пластических деформаций сводится к повышению расчетного сопротивления умножением на величину c, коэффициент, характеризующий резерв несущей способности изгибаемого элемента, обусловленный пластической работой металла, и определенный по формуле для балок двутаврового сечения, как наиболее распространенного в изгибаемых элементах

, (2.13)

где - отношение площадей поперечного сечения пояса и стенки балки.

Для прокатных двутавров различных типов , чему соответствует значениес = 1,1 .

Для составных двутавров (рис.2.2,в). коэффициентc вычисляется по формуле (2.13).

Для прямоугольного сечения, когда площадь поясов балки можно приравнять к нулю –с = 1,5 (рис.2.2,б).

Устремляя площадь стенки к нулю (рис.2.2,е) из двутавра получаем расчетные сечения фермы или балки с гибкой стенкой, тогда с = 1.

Наибольшим пластическим резервом будет обладать балка с поперечным сечением (см. рис.2.2,а), для нее с = 2.

Практически выбор формы поперечного сечения изгибаемых элементов зависит от многих факторов, среди которых главным является расход металла, так как его стоимость составляет 80% общей стоимости конструкции.

Кроме нормальных напряжений Ơ в балках возникают и касательные напряжения τxy, зависящие от поперечной силы и локальных напряженийƠy в местах передачи на балку сосредоточенных нагрузок. Например, для балок, загруженных сосредоточенными силами по пролету (рис.2.3,а) определяющей

будет компонента Ơx. При большей сосредоточенной нагрузке на балке с малым пролетом (рис.2.3,б) определяющим будет напряжение τxy.. Распределение Ơпр

Рис.2.2. Зависимость коэффициента c от формы поперечного сечения

изгибаемого элемента

по высоте балки в упругой стадии будет существенно отличаться от предыдущего случая, а при дальнейшем увеличении нагрузки вплоть до появления пластического шарнира (Ơпр = ƠT) обусловит более развитую пластическую область вблизи нейтральной оси.

При рассмотренном многократном напряженном состоянии проверку прочности балки можно производить по формуле:

(2.14)

где 1,15 – коэффициент, учитывающий развитие пластических деформаций в балке [аналогично коэффициенту “c” в формуле (2.12)].

При изгибе относительно двух главных осей инерции поперечного сечения

балки (x, y) – косом изгибе - допускается проверку прочности.производить по упрощенной формуле

Mx/(cxWx.n.min)+My/(cy Wy.n.min) ≤ Ry γc при τ≤ 0.5Rs (2.15)

где идаются в зависимости от формы сечения (см.прил.1);- зависит от величины.

Рис. 2.3. Распределение пластических деформаций в двутавровой балке при сложном напряженном состоянии.