2.3 Информационные сети атк
2.3.1 Структура информационных сетей
Средства коммуникаций обеспечивают создание сетей для обмена данными между различными микропроцессорными средствами автоматизации. К ним относятся модули коммуникационных процессоров для соединения контроллеров «точка—точка» и адаптеров магистральных интерфейсов связи, коаксиальные и оптоволоконные кабели, повторители, интерфейсные мультиплексоры и др. Структура информационных сетей может быть магистральной (линейной), радиальной (типа «звезда»), кольцевой и древовидной. При создании систем отдают предпочтение магистральным структурам, которые по сравнению с другими структурами требуют меньших материальных затрат при прокладке кабелей, легко расширяются и позволяют осуществлять непосредственную коммуникационную связь от абонента к абоненту через единственную линию передачи данных. Как правило, сети делают открытыми для интегрирования компьютерных средств автоматизации различных производителей. С этой целью выпускаются мосты и межсетевые преобразователи для связи различных локальных сетей и интерфейсов.
Из разнообразных типов средств коммуникации можно создавать сети, оптимально приспособленные к топологии технологического комплекса и обеспечивающие требуемые объемы и скорости передачи информации.
Для связи агрегатов в технологическом комплексе, а также для единого управления комплексами на производстве, применяют локальные промышленные сети. В промышленности применяется большое количество сетей. Обобщенные данные некоторых из них представлены в табл. 2.2. Наиболее известными и часто используемыми являются сети: Industrial Ethernet, Ethway, Mapway, Profibus, Modbus, Modbus plus, Unitelwey, Masterbus.
Таблица 2.2
Протокол | Среда передачи | Число узлов | Скорость передачи данных, кбод | Длина линий, м | Топология сети |
Bitbus | Витая пара, радиоканал, волоконно-оптический кабель | До 250 | До 1400 | 30... 1200 | Шина |
AS I | Витая пара, AS I-кабель | До 32 | До 167 | До 1000 | Линия, звезда, дерево, кольцо |
Hart | Витая пара, выделенный телефонный канал | До 15 | 1200 | До 3000 | Звезда |
LonWorks | Витая пара, коаксиальный кабель, волоконно-оптический кабель, радиоканал | До 127 | 4,88... 1250 | До 2000 | Произвольная |
Canbus | Витая пара | До 30 | 50... 1000 | До 1 км – 20 кбод; до 40 м – 1 Мбод | Шина |
Modbus | Не специфицированная | 1 master до 247 slaves | 0,6... 19,2 | 15 – RS-232C; 1200 – RS-422; 1000 –токовая петля | Звезда, шина |
Profibus | Витая пара, волоконно-оптический кабель | До 126 | 500... 1500 (FMS); 1500... 12 000(DP); 31 (РА) | 1200; 4800 – с повторителем; до 23000 – с оптокабелем | Звезда, шина |
Промышленные сети, как правило, имеют трехуровневую структуру построения.
На нижнем уровне обеспечивается взаимодействие между агрегатами (их подключение и обмен информацией между ними), что дает возможность экономии модулей входов/выходов, простого и быстрого монтажа, электропитания датчиков и исполнительных механизмов через коммуникационные линии, осуществления функций самотестирования и параметрирования, достижения высокой помехозащищенности и др. На этом уровне соединяются датчики и исполнительные механизмы с системой автоматизированного управления. Максимальная длина соединительной линии порядка 100 м без повторителей и около 300 м с повторителями.
Средний уровень предназначен для координации работы всех агрегатов, входящих в технологический комплекс, для получения информации от каждого из них, визуализации режимов работы комплекса. Протяженность сети может быть от 1200 м до 100 км в зависимости от физической среды передачи данных и применения повторителей.
Верхний уровень (административный) предназначен для связи с системой управления производством.
К промышленным сетям предъявляются следующие требования:
выполнение разнообразных функций по передаче данных, включая пересылку файлов, поддержку терминалов, обмен с внешними запоминающими устройствами, обработку сообщений, доступ к файлам и базам данных, передачу речевых сообщений;
возможность подключения большого набора стандартных и специальных устройств, в том числе оборудования контроля и управления и др., а также подключения современных, перспективных и ранее разработанных устройств с различными программными средствами, архитектурой, принципами работы;
доставка с высокой достоверностью информации адресату;
обеспечение непосредственной взаимосвязи между подключенными устройствами без промежуточного накопления и хранения информации;
простота монтажа, модификации и расширения сети; подключение новых устройств и отключение прежних без нарушения работы сети длительностью более 1 с.
При взаимодействии устройств в сети необходимо учитывать:
возможность для каждого устройства связываться и взаимодействовать с любым другим устройством;
обеспечение равноправного доступа к физической среде для всех пользователей;
возможность адресации пакетов информации одному устройству, группе устройств, всем подключенным устройствам.
Информационные требования заключаются в следующем:
должны быть обеспечены «прозрачный» режим обслуживания, а также возможность приема, передачи и обработки любых сочетаний битов, слов и символов;
пропускная способность сети не должна существенно снижаться при достижении полной загрузки.
К требованиям по надежности и достоверности относят:
отказ или отключение питания подключенного устройства должны вызывать только переходную ошибку;
средства обнаружения ошибок должны выявлять все пакеты, содержащие до четырех искаженных битов. Если же достоверность передачи достаточно высока, сеть не должна сама исправлять обнаруженные ошибки; функции анализа, принятия решения и исправления ошибки должны выполняться подключенными устройствами.
Перечисленные требования обусловливают основные особенности промышленных сетей:
возможность размещения их на сравнительно небольшой территории;
наличие высокоскоростного общего канала (физической среды);
соединение в сети самых разнообразных и независимых устройств (термин «высокоскоростной канал» условен, поскольку скорость передачи оценивается только по отношению к подключенным устройствам) и др.
2.3.2 Сетевые средства
Основным сетевым средством любой сети является интеллектуальный коммуникационный процессор, позволяющий подключать персональные компьютеры, программируемые контроллеры, программаторы и другие устройства и осуществлять их взаимодействие с системой управления. Основными характеристиками коммуникационного процессора являются: тип монтажной шины (слота), скорость передачи данных, количество соединений и потребляемый ток. Коммуникационные процессоры выпускаются с монтажными слотами следующих типов: ISA, PCMCIA, PCI. Скорость передачи данных у коммуникационных процессоров от 9,6 кбит/с до 12 Мбит/с для сетей среднего уровня и от 10 до 100 Мбит/с для сетей верхнего уровня.
Для подключения к сети активных и пассивных оконечных устройств применяются шинные терминалы RS485, шинные штекеры, трансиверы и другие специальные модули, например Optical Bus Terminal для подключения устройств к оптической сети.
Технологические комплексы могут использовать несколько децентрализованных систем управления, связанных друг с другом мощной информационной сетью. В этом случае для их совместной работы применяют коммутаторы или маршрутизаторы.
На нижнем уровне для подключения датчиков и исполнительных механизмов используют различные модули. Целый модуль состоит из верхней (пользовательский модуль) и нижней (монтажный модуль) частей. Эти части имеют различные исполнения. Для монтажных модулей возможна установка на профильную планку или крепеж с помощью винтового соединения. Пользовательские модули по своим функциям соответствуют обычным модулям входов/выходов.
Для передачи информации на большие расстояния применяют повторители, позволяющие конфигурировать сети, состоящие из нескольких сегментов.
Физическая среда сетей представляет собой физический материал, по которому передается информация. В качестве такого материала могут использоваться различные виды кабелей (витая пара, коаксиальные, многожильные, волоконно-оптические), а также эфир (радиоканалы, УКВ-каналы, инфракрасные каналы).
Кабель состоит из проводников, слоев экрана и изоляции. В некоторых случаях кабели оборудуются разъемами, с помощью которых присоединяются к оборудованию. Для обеспечения быстрой перекоммутации кабелей и оборудования используются различные электромеханические устройства, называемые кроссовыми секциями, кроссовыми коробками или шкафами.
В сетях применяются кабели, удовлетворяющие определенным стандартам, что позволяет строить кабельную систему сети из кабелей и соединительных устройств разных производителей. Наиболее распространены в мировой практике следующие стандарты: американский EIA/TIA-568A; международный ISO/IEC 11801; европейский EN50173.
В кабеле на витой паре обычно используются несколько пар изолированных проводов, обвитых друг вокруг друга. Взаимная обвивка обеспечивает защиту от собственных и внешних наводок. Кабель на витой паре бывает неэкранированным и экранированным. Стандарт EIA/TIA 568A Commercial Building Wiring Standard определил семь категорий кабелей на неэкранированной витой паре (Unshielded Twisted Pair, UTP1 ... UTP7).
Кабель UTP5 способен работать со скоростью 100 Мбит/с; его волновое сопротивление 100 Ом в диапазоне частот от 1 МГц до предельной. Для кабеля UTP5 установлено минимальное число взаимных скручиваний на единицу длины (примерно 26 на 1 м). Его основными недостатками являются: взаимное наложение сигналов между смежными проводами, чувствительность к внешним электромагнитным полям и большая степень затухания сигнала по пути.
Более современные кабели категорий 6 и 7 промышленность начала выпускать сравнительно недавно. Для кабеля категории 6 характеристики определяются до частоты 200 МГц, а для кабелей категории 7 – до 600 МГц.
Все кабели UTP выпускаются в четырехпарном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Для соединения кабелей с оборудованием используются вилки и розетки, представляющие восьмиконтактные разъемы.
Экранированная витая пара (Shielded Twisted Pair – STP) содержит электрически заземляемую медную оплетку или алюминиевую фольгу. Существуют кабели с общим экраном и экраном вокруг каждой пары. Экран обеспечивает защиту от всех внешних электромагнитных полей. Однако по скорости передачи данных и ограничениям, накладываемым на максимальное расстояние, такие кабели идентичны кабелям без экранирования.
Коаксиальные кабели (RG-8, RG-11, RG-58/U, RG-58 A/U, RG-58 C/U, RG-59) способны обеспечивать передачу данных со скоростью 10 Мбит/с на расстояние до 500 м. Минимальное расстояние между точками подключения должно быть не меньше 2,5 м. Кабели имеют стандартное волновое сопротивление 50 или 75 Ом.
Волоконно-оптический кабель состоит из свободно уложенных или определенным образом скрученных волоконных световодов и защитного покрытия. Передача данных производится при помощи лазерного или светодиодного передатчика, который генерирует световые импульсы, проходящие через световоды. Перед попаданием в световод сигнал от передатчика (излучателя) проходит через оптическое согласующее устройство и оптический разъемный соединитель (коннектор). На принимающем конце сигнал воспринимается фотодиодом, который преобразует его в электрический ток. Волоконно-оптический кабель обладает рядом преимуществ: малым затуханием и независимостью затухания от частоты передаваемого сигнала; высокой степенью защиты от внешних электромагнитных полей; исключает несанкционированный доступ к данным.
В зависимости от условий распространения световой волны в центральном световоде волоконно-оптические кабели делятся на одномодовые (single mode — SM) и многомодовые (multi mode — ММ). Максимальная длина кабеля (412 м) определяется временными параметрами. Полоса пропускания одномодового кабеля очень широкая — до сотен ГГц на километр. Многомодовые кабели имеют более узкую полосу пропускания — от 500 до 800 МГц/км. Сужение полосы происходит из-за потерь световой энергии при отражениях, а также из-за интерференции лучей разных мод. Для передачи информации применяется свет с длиной волны 1,55 мкм, 1,3 мкм и 0,85 мкм. Светодиоды могут излучать свет с длиной волны 0,85 мкм и 1,3 мкм.
Волоконно-оптические кабели присоединяют к оборудованию разъемами MIC, ST и SC.
Волоконно-оптические кабели обладают замечательными характеристиками: электромагнитными, механическими. Однако у них есть серьезный недостаток – сложность соединения волокон с разъемами и между собой при необходимости наращивания длины кабеля.
Программное обеспечение, предназначенное для работы промышленной сети, должно позволять:
реализовывать связь между активными аппаратными устройствами, входящими в сеть любого уровня;
производить обмен данными в сети;
выполнять функции диагностирования;
обеспечивать функции удаленного программирования контроллеров по сети и др.
Рекомендуемая литература
Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: учебник для вузов / М.П. Белов, В.А. Новиков, Л.Н. Рассудов. – М.: Изд. центр «Академия», 2004. – С. 74-80.
Эм Г.А. Элементы и устройства автоматики: Учеб. пособие. – Караганда: Изд-во КарГТУ, 2009. – С.16-31.
Родионов В.Д., Терехов В.А., Яковлев В.Б. Технические средства АСУ ТП: Учеб. пособие для вузов / Под ред. В.Б. Яковлева. – М.: Высш. шк., 1989. – С.29-72.
Лекция 3
- Лекционный материал
- 1 Введение. Типовая структура атк. Современное состояние и перспективы развития средств атк
- 1.1 Цель и задачи дисциплины
- 1.3 Типовая структура атк
- 1.5 Связь дисциплины с другими дисциплинами специальности
- 2 Технические средства атк
- 2.1 Классификация технических средств атк
- 2.2 Типизация, унификация и агрегатирование средств атк
- 2.3 Информационные сети атк
- 3 Режимы работы технологического оборудования и электроприводов атк
- 4 Системы управления тк
- 5 Состав и свойства систем управления прокатными и кузнечно-прессовыми комплексами
- 6 Состав и свойства систем автоматизации вентиляторных установок
- 6.1 Общие сведения
- 6.3 Управление вентиляторным оборудованием
- 6.4 Основные положения по автоматизации управления проветриванием шахт и рудников
- 6.5 Основные требования к аппаратуре автоматизации управления вгп
- 6.6 Принцип работы аппаратуры уквг
- 7 Состав и свойства систем автоматизации насосных установок
- 7.1 Общие сведения
- 7.2 Основные задачи автоматизации водоотливных установок
- 7.5 Датчики и специальные реле автоматизации водоотлива
- 8 Атк машиностроения
- 8.1 Характеристика технологических комплексов
- 8.2 Автоматизированный робототехнический комплекс
- 8.3 Автоматизированный участок металлообработки
- 8.4 Системы чпу
- 9 Атк котельных установок
- 9.1 Общие сведения
- 9.2 Технологическая схема котельного агрегата
- 9.3 Автоматизация котельной установки
- 10 Атк конвейерных установок
- 10.1 Характеристика транспортного оборудования и электроприводов
- 10.2 Основные положения по автоматизации конвейерного транспорта
- 10.3 Датчики и аппараты автоматизации конвейерных линий
- 10.4 Асу непрерывными конвейерными линиями
- 11 Атк грузоподъемных установок
- 11.1 Общие сведения
- 11.2.1 Управление мостовой крановой установкой
- 11.4 Шахтные подъемные установки
- 12 Атк горнодобывающего производства
- 12.1 Характеристика технологических комплексов
- 12.2 Атк открытой разработки
- 12.3 Атк углеприема обогатительной фабрики
- 13 Атк металлургического производства
- 13.1 Основные типовые узлы регулирования
- 13.2 Автоматическое регулирование температуры в печи
- 13.3 Автоматическое регулирование соотношения топливо-воздух
- 13.4 Автоматизация кислородно-конвертерного процесса
- 13.5 Автоматизация непрерывной разливки стали
- 14 Атк городского хозяйства
- 14.1 Характеристика технологических комплексов
- 14.2 Система автоматизации насосной станции
- 14.3 Система автоматизации вентиляции и кондиционирования воздуха
- 14.4 Система автоматизации жизнеобеспечения жилого здания
- 15 Атк агропромышленного производства
- 15.1 Характеристика технологических комплексов
- 15.2 Атк технологической линии консервирования