Аср стабілізації концентрації речовин
До особливих аспектів регулювання концентрації в багатьох випадках належить розподіленість об'єкта керування і первинного вимірювального перетворювача. Наприклад, датчики газоаналізаторів, аналізатори рідин часто розміщуються на деякій відстані від об'єкта, мають пристрої підготовки газу чи рідини для вимірювання. Це призводить до появи істотного часу чистого запізнення, яке може значно перевищувати сталу часу аналізатора. До таких приладів контролю належать хроматографи, аналізатори фото калориметричні, термомагнітні, оптичні, кондуктометричні та ін. Виняток становлять датчики рН-метрів, які можуть розміщуватися безпосередньо в технологічному апараті, ультразвукові та ін.
Функціональну схему одноконтурної АСР концентрації за наявності запізнення датчика та його структурну схему показано на рис. 3.7. Концентрація регулюється зміною витрат матеріального потоку на вході об'єкта, який несе реагуючий компонент, або зміною витрати теплового потоку, що спричинює зміну температури в апараті.
Рис. 3.7. Схеми АСР із запізненням у каналі зворотного зв'язку:
а - функціональна; б – структурна
Система регулювання працює так: за допомогою пристрою підготовки проби 4 аналізована суміш втягується, проходить, наприклад, стадії охолодження, очищення, дозування і надходить на датчик 5, в якому концентрація перетворюється на електричний або пневматичний сигнал. Останній надходить на проміжний перетворювач 6, а далі - на регулятор 1 і виконавчий механізм 2.
У динамічному відношенні стадія підготовки аналізованої проби являє собою ланку чистого запізнення з передаточною функцією
W4(s)=exp(-τ4s) /3.16/
де τ4 – час чистого запізнення.
Передаточна функція АСР по каналу регулювання
/3.17/
де τ3 і τ4 – час чистого запізнення відповідно об’єкта керування та датчика.
Із рівняння /3.17/ випливає, що збільшення часу чистого запізнення в характеристичному рівнянні призводить до погіршення стійкості системи регулювання. Крім того, на роботу регулятора істотно впливає також якість регулювання. Частоти переходу ДЧХ зміщуються ближче до нуля, а це означає, що з’являються додаткові резонансні частоти при достатньо низьких частотах. У таких випадках в перехідному процесі істотно підсилюються друга та третя складові, які звичайно мають низький ступінь загасання і великий час перехідного процесу. Тому часто доцільно використовувати посередні методи контролю за концентрацією, наприклад, температурної депресії, ультразвукові, радіоактивні, гідростатичні, інші методи визначення концентрації за густиною розчину тощо.
Системи регулювання pH-рідин можна поділити на системи позиційного та неперервного регулювання. Позиційне регулювання використовують тоді, коли швидкість зміни pH невелика, а допустимі межі її коливань достатньо широкі. Якщо необхідно точно підтримувати pH розчину на заданому рівні, то використовують неперервні ПІ- або ПІД-регулятори.
Спільною особливість об’єктів при регулювання pH є нелінійність їх статичних характеристик, пов’язана з нелінійною залежністю pH від витрати реагентів (рис. 3.8 а). На кривій pH=f(F) можна відокремити три ділянки: І і ІІІ мають велику не лінійність і достатньо малі коефіцієнти передавання; на ділянці ІІ об’єкт за своєю статичною характеристикою наближається до релейного елемента. Практично це означає, що в розрахунку лінійної АСР коефіцієнт підсилення регулятора дістають настільки малим, що він виходить за межі робочих настроювань промислових регуляторів. При цьому чим меншою є стала часу об’єкта, тим важче забезпечити стійке регулювання, оскільки починають впливати також запізнення в імпульсних лініях.
Рис. 3.8 Статична характеристика об’єкта (а) і функціональна схема системи регулювання pH (б)
Щоб забезпечити стійке регулювання pH, використовують спеціальні системи, схему однієї з яких показано на рис. 3.8 б. Клапан 2 великого умовного діаметру, який настроєно на максимальний діапазон зміни вихідного сигналу регулятора 1, використовують для грубого регулювання витрати F1. Клапан 3 (для точного регулювання) розрахований на меншу пропускну здатність і настроєний так, що на ділянці І характеристики pH=f(F) він повністю відкритий, а на ділянці ІІІ – повністю закритий. Таким чином у разі незначного відхилення pH від заданого значення ступінь відкриття клапана 2 практично не змінюється, а регулювання виконують за допомогою клапана 3. Структурну схему такої АСР показано на рис. 3.9.
Рис. 3.9 Структурна схема регулювання pH
Передаточна функція такої системи регулювання має вигляд:
/3.18/
Передаточні функції W2(s) і W3(s) розрізняють як коефіцієнтом передачі, так і сталою часу. Звичайно стала часу виконавчого механізму 3 має бути значно меншою, ніж виконавчого механізму 2, а коефіцієнт передачі K3>K2.
Ділянка ІІ статичної характеристики об’єкта достатньо вузька і в реальних умовах похибка регулювання через лінеаризацію на розглядуваній ділянці може бути досить великою. У цьому разі точніші результати регулювання дає система з трьома регуляторами, увімкненими паралельно (рис. 3.10 а).
Із ри. 3.9 б випливає, що коефіцієнти передачі об’єкта на ділянці pH1…pH2 різні. Найменший коефіцієнт передачі відповідає точці 1, а найбільший – точці 3. У цьому разі регулятор R1 має настроювання, які відповідають об’єкту з коефіцієнтом передачі K1, регулятор R2 – із коефіцієнтом передачі K2, а регулятор R3 – із коефіцієнтом передачі K3.
Структурну схему такої АСР показано на рис. 3.11.
Рис. 3.10 Функціональна схема (а) і нелінійна ділянка статичної характеристики (б)
Рис. 3.11 Структурна схема АСР з трьома регуляторами
Таку систему регулювання розраховують окремо для кожного об’єкта і відповідного йому регулятора: R1→W1; R2→W2 і R3→W3.
Контрольні запитання:
Назвіть основні елементи одноконтурної АСР.
У чому полягає принцип роботи одноконтурної АСР?
Яка основна відмінність перехідних процесів АСР у paзi зміни збурюючого і задавального впливів?
Яка мета одноконтурної АСР витрати?
Що є об'єктом регулювання в одноконтурній АСР витрати?
Опишіть принцип її роботи.
Які регулятори, як правило, не використовують в одноконтурних АСР витрати і чому?
Який принцип роботи АСР стабілізації рівня?
Назвіть основні особливостей регулювання температури продукту на виході кожухотрубного теплообмінника.
Назвіть основні збурення АСР стабілізації температури теплообмінника.
Що відносять до особливих аспектів регулювання концентрації?
- Технічний коледж
- 1. Опис предмета навчальної дисципліни
- Характеристика предмета навчальної дисципліни
- 2. Зміст дисципліни
- 2.1. Лекційні заняття
- 3. Структура залікового кредиту дисципліни
- 4. Практичні заняття
- 5. Лабораторні заняття
- 1.1 Поняття про автоматику та автоматизацію
- Основні етапи розвитку автоматики
- 1.2 Основні поняття про автоматизацію керування виробництвом та технологічними процесами. Засоби та методи керування виробництвом
- 1.3 Класифікація технологічних процесів
- 1.4 Види параметрів керування.
- 1.5 Вимоги до об’єктів керування
- 1.6 Види і рівні автоматизації
- 1.7 Економічні аспекти автоматизації
- Класифікація засобів автоматизації
- 2.2 Основні функції автоматизації
- 2.3 Класифікація систем автоматизації
- 3.1 Розрахунок одноконтурних систем регулювання
- 3.2 Аср стабілізації витрат матеріальних і енергетичних потоків
- 3.3 Аср стабілізації рівня рідини в ємності
- 3.4 Аср стабілізації тиску газу в резервуарі
- Аср стабілізації температури теплообмінника
- Аср стабілізації концентрації речовин
- Тема №4 багатоконтурні системи регулювання
- 4.1 Комбіновані аср
- 4.1.1 Умови інваріантності
- 4.1.2 Умови фізичної реалізованості інваріантних аср
- 4.1.3 Технічна реалізація інваріантних аср
- 4.2 Каскадні системи регулювання
- 4.3 Системи регулювання з додатковим імпульсом за похідною з проміжної точки
- 4.4 Взаємопов’язані системи регулювання
- 4.4.1 Аср непов’язаного регулювання
- 4.4.2 Аср пов’язаного регулювання
- 4.5 Системи регулювання співвідношення потоків
- 4.6 Адаптивні та екстримальні системи регулювання
- 4.6.1 Адаптивні системи регулювання (аср)
- 4.6.2 Системи екстремального регулювання (еср)
- Тема №5 синтез систем регулювання
- 5.1 Вибір структури й оцінка параметрів систем регулювання
- 5.2 Вибір закону регулювання регулятора
- 5.3 Розрахунок настроювань регуляторів
- Автоматизаціія типових технологічних процесів Тема №6 автоматизація теплових процесів
- 6.1 Автоматизація теплових процесів
- 6.1.1 Автоматизація теплообмінників
- 6.1.2 Одноконтурне регулювання.
- 6.1.3 Каскадне регулювання.
- 6.1.4 Комбіноване регулювання.
- 6.2 Автоматизація печей і топок
- 6.3 Автоматизація процесів випарювання
- 6.4 Автоматизація процесу кристалізації
- Основні принципи керування процесом кристалізації
- 6.4.2 Регулювання концентрації кристалів в суспензії
- 6.4.3 Регулювання кристалізатора з мішалкою
- 6.4.4 Регулювання кристалізатора випарного типу
- Тема №7 автоматизація масообмінних процесів
- 7.1 Автоматизація процесів ректифікації
- 7.1.1 Одноконтурного регулювання ректифікаційною колоною
- 7.1.2 Регулювання концентрацією цільового продукту в кубовій рідині
- 7.1.3 Регулювання концентрацією в кубі колони за різницею температур кипіння свіжого розчину та еталонної рідини
- 7.1.4 Регулювання процесом ректифікації за допомогою систем співвідношення
- 7.1.5 Перехресне регулювання температури та рівня в кубовій частині колони
- 7.1.6 Регулювання концентрації основної речовини в закріплюючій частині колони
- 7.1.7 Регулювання тиску в колоні
- 7.1.8 Регулювання ентальпії свіжого розчину
- 7.1.9 Регулювання процесу відбору проміжної фракції
- 7.1.10 Автоматичний контроль, сигналізація та системи захисту
- 7.2 Автоматизація процесів абсорбції
- 7.3 Автоматизація процесів адсорбції
- 7.4 Автоматизація процесів сушіння
- 7.4.1 Регулювання барабанного прямоточного сушильного агрегату
- 7.4.2 Регулювання протиточного сушильного апарата
- Тема №8 автоматизація механічних процесів
- 8.1 Автоматизація транспортування твердих матеріалів
- 8.1.1 Загальні відомості. Типова схема автоматизації
- 8.1.2 Цілі керування процесом транспортування
- 8.1.3 Внесення регулюючих впливів шляхом зміни швидкості транспортера
- 8.1.4 Системи автоматичного керування транспортерами
- 8.2 Автоматизація процесів подрібнення твердих матеріалів.
- 8.2.1 Загальні відомості
- 8.2.2 Регулювання барабанних млинів мокрого помолу
- 8.2.3 Регулювання об’єму матеріалу шляхом зміни витрати сировини
- 8.2.4 Регулювання млинів, які працюють по замкненому циклу
- 8.2.5 Регулювання щокових подрібнювачів
- 8.3 Автоматизація процесів дозування та змішування твердих матеріалів
- 8.3.1 Загальні відомості. Фізичні основи процесу
- 8.3.2 Регулювання дозатора з стрічковим транспортером та регуляторами прямої дії
- 8.3.3 Регулювання дозатора з стрічковим транспортером за допомогою двоконтурної системи
- 8.3.4 Регулювання дозаторів з розділеним потоком дозує мого матеріалу
- Тема №9 автоматизація гідромеханічних процесів
- 9.1 Автоматизація реакторів. Автоматизація процесу змішування рідин
- 9.1.1 Загальні відомості
- 9.1.2 Регулювання реакторів безперервної дії.
- 9.1.3 Регулювання реакторів напівбезперервної дії
- 9.1.4 Регулювання реакторів періодичної дії
- 9.1.5 Регулювання трубчастими реакторами
- 9.2 Автоматизація процесів переміщення рідин
- 9.2.1 Типове рішення автоматизації
- 9.2.2 Регулювання при різних цілях управління
- 9.2.3 Регулювання методом дроселювання потоку в байпасному трубопроводі
- 9.2.4 Регулювання зміною числа обертів валу насоса
- 9.3 Автоматизація процесів відстоювання
- 9.3.2 Регулювання зміни витрати суспензії
- 9.3.3 Регулювання густини згущеної суспензії
- 9.3.4 Регулювання подачі коагулянту
- 9.3.5 Регулювання режиму роботи гребкового механізму
- 9.3.6 Управління процесом протиточного відстоювання
- 9.3.7 Управління відстійником періодичної дії
- 9.4 Автоматизація процесів фільтрування
- 9.4.1 Автоматизація процесу фільтрування рідких неоднорідних систем
- 9.4.2 Регулювання товщини осаду
- 9.4.3 Управління фільтрувальними відділами
- 9.4.4 Фільтрування газових систем
- 9.4.5 Регулювання по чіткій часовій програмі
- 9.5 Автоматизація процесу центрифугування рідких систем
- 9.5.1 Типове рішення автоматизації
- 9.5.2 Регулювання відстійних центрифуг
- 9.5.3 Управління центрифугами періодичної дії
- 9.5.4 Регулювання швидкості обертання центрифуг періодичної дії
- 9.6 Автоматизація процесів очистки газів
- 9.6.1 Мокра очистка газів
- 9.6.2 Електрична очистка газів
- 9.7 Автоматизація процесів очистки стічних вод
- 9.7.1 Загальні відомості
- 9.7.2 Біохімічна очистка.
- Практична робота №1
- Теоретичні відомості
- Практичне заняття
- Практичне заняття
- Розподіл балів, що присвоюються студентам.
- Питання винесені на іспит
- Література.