4.1.9. Массопередача с твердой фазой
В основе таких распространенных процессов химической технологии, как адсорбция, сушка, экстракция из твердых пористых материалов, лежат общие закономерности массообмена с участием твердой фазы.
Массопередача между твердой и движущейся жидкой (газовой) фазой складывается из двух процессов: 1) перемещение распределяемого компонента внутри пор твердого тела к поверхности раздела фаз (или от нее) вследствие внутренней массоотдачи, или массопроводности; 2) перенос того же вещества от поверхности раздела фаз в поток жидкости (газа, пара) за счет массоотдачи. Иными словами, массопередача является результатом внутренней и внешней диффузий.
В качестве закона, которому подчиняется кинетика переноса распределяемого вещества в твердом теле, принят закон, аналогичный закону теплопроводности: количество вещества, переместившегося в твердой фазе за счет массопроводности, пропорционально градиенту концентрации, площади, перпендикулярной направлению потока вещества, и времени, т.е.
.
В этом уравнении коэффициент скорости процесса называетсякоэффициентом массопроводности. Коэффициент массоопроводности аналогичен коэффициенту диффузии, но при одинаковых условиях меньше его, поэтому его иногда называют коэффициентом «стесненной диффузии».
Процесс перемещения вещества внутри твердого тела может быть описан дифференциальным уравнением массопроводности
. (3.27)
Вполне очевидно, что не является постоянной величиной. Он зависит от природы процесса (адсорбция, сушка, выщелачивание), от ряда факторов, определяющих значение коэффициента молекулярной диффузии, и от структуры твердого пористого тела.
Дифференциальное уравнение массопроводности должно быть дополнено уравнением, характеризующим условия на границе раздела твердой и жидкой фаз. К элементарной площадке на границе раздела подводится вещество из твердой фазы в количестве
.
От элементарной площадки в омывающую фазу отводится
. (3.28)
Приравнивая правые части этих уравнений, получим дифференциальное уравнение, характеризующие условия на границе раздела фаз:
. (3.29)
Из уравнения (4.29) может быть получен безразмерный комплекс делением правой на левую часть, который называется диффузионным критерием Био:
.
Критерий Био выражает отношение интенсивности переноса вещества в ядре омывающей фазы к интенсивности переноса в твердом материале, где массообмен связан с массопроводностью.
Из дифференциального уравнения массопроводности
получаем безразмерный комплекс делением правой части на левую, который называется диффузионным критерием Фурье:
,
характеризующим изменение скорости потока вещества, перемещаемого массопроводностью в твердом теле.
Дифференциальное уравнение массопроводности для одномерного перемещения вещества по толщине пластины (рис. 4.10) имеет аналитическое решение в виде
, (3.30)
где– безразмерная концентрация распределяемого вещества в твердой фазе с координатой;– текущая концентрация в точкев момент времени;– определяющий размер твердого тела; безразмерная координата точки, в которой концентрация равна.
В рассматриваемом случае в момент времени концентрация внутри пластины меняется отдо, в зависимости от коор-динаты, т.е..
Рис. 3.10. Осесимметричное изменение концентрации распределяемого компонента
по толщине пористой твердой пластины во времени
- Минобрнауки рф
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Тепловые процессы и аппараты
- 2.1. Способы передачи теплоты
- 2.2. Тепловые балансы
- 2.3. Температурное поле и температурный градиент
- 2.4. Передача тепла теплопроводностью
- 2.5. Тепловое излучение
- 2.6. Конвективный теплообмен
- 2.6.1. Теплоотдача
- 2.6.2. Дифференциальное уравнение конвективного теплообмена
- 2.6.3. Подобие процессов теплообмена
- 2.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 2.6.5. Теплоотдача при изменении агрегатного состояния
- 2.7. Сложный теплообмен
- 2.8. Процессы нагревания, охлаждения и конденсации
- 2.9. Теплообменные аппараты
- 2.9.1. Классификация и типы теплообменных аппаратов
- 2.9.2. Расчет теплообменных аппаратов
- 2.9.3. Выбор и проектирование поверхностных теплообменников
- 3. Массообменные процессы и аппараты
- 3.1. Основы массопередачи
- 3.1.1. Общие сведения о массообменных процессах
- 3.1.2. Основные расчетные зависимости массообменных процессов
- 3.1.3. Материальный баланс массообменных процессов
- 3.1.4. Движущая сила массообменных процессов
- 3.1.5. Модифицированные уравнения массопередачи
- 3.1.6. Основные законы массопередачи
- 3.1.7. Подобие процессов переноса массы
- 3.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 3.2. Абсорбция
- 3.2.1. Равновесие при абсорбции
- 3.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 3.2.4. Конструкции колонных абсорбционных аппаратов
- 3.2.5. Десорбция
- 3.3. Перегонка жидкостей
- 3.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 3.3.4. Ректификация многокомпонентных смесей
- 3.3.5. Тепловой баланс процесса ректификации
- 3.3.6. Специальные виды перегонки
- 3.3.7. Устройство ректификационных аппаратов
- 3.4. Экстракция
- 3.4.1. Жидкостная экстракция
- 3.4.2. Равновесие при экстракции
- 3.4.3. Материальный баланс экстракции
- 3.4.4. Кинетические закономерности процесса экстракции
- 3.4.5. Принципиальные схемы процесса экстракции
- 3.4.6. Конструкции экстракторов
- 3.5. Адсорбция
- 3.5.1. Равновесие в процессах адсорбции
- 3.5.2. Промышленные адсорбенты
- 3.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 3.6. Сушка
- 3.6.1. Равновесие в процессах сушки
- 3.6.2. Конструкции сушилок и области их применения
- 3.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке: