Логометры. Устройство. Принцип действия.
Логометры предназначены для измерения температуры в комплекте с термопребразователями сопротивления. Рассмотрим принцип действия логометра.
Р и с. 3.1 Принципиальная схема магнитоэлектрического логометра
Измерительная схема логометра состоит из параллельных цепей I и II, питаемых от источника тока Б. В цепь I включены рамка RР1 и резистор R, в цепь II – рамка RР2, термопреобразователь сопротивления RT и соединительная линия Rл. Через рамки логометра RР1 и RР2 протекают токи J1 и J2, обратно пропорциональные сопротивлениям цепей I и II. Они образуют магнитные поля, взаимодействие которых с полем основного магнита создает вращающие моменты M1 и М2, действующие на рамки в противоположных направлениях.
Если сопротивления цепей I и II одинаковы, т. е.
RР1+R=RР2+RT+Rл , (3.1)
то
J1 = J2 . (3.2)
Тогда при симметричном расположении рамок RР1 и RР2 относительно полюсных наконечников вращающие моменты М1 и М2 будут равны. В этом положении при определенном значении RТ подвижная часть логометра находится в состоянии равновесия и стрелка прибора устанавливается посредине шкалы.
При увеличении с повышением измеряемой температуры сопротивления RТ ток J2 в цепи II уменьшится и момент М1 станет больше, чем М2. Под влиянием появившейся разности вращающих моментов подвижная часть логометра начнет поворачиваться в сторону действия большего момента (на рис. 3.1 – по часовой стрелке) до тех пор, пока не наступит новое состояние равновесия. Это равновесие возникает благодаря тому, что рамка RР1 с большей силой тока входит в расширяющуюся часть воздушного зазора, т.е. в область более слабого магнитного поля, постоянно уменьшая тем самым момент M1. Одновременно с этим рамка RР2 с меньшей силой тока входит в сужающуюся часть воздушного зазора, т.е. в более сильное магнитное поле, что ведет к увеличению момента М2. Новое равновесие подвижной части прибора наступит в положении, при котором вращающие моменты рамок сравняются. В этом случае будем иметь
M1= М2 , или k1B1J1= k2B2J2, (3.3)
где B1, B2 – магнитные индукции в зонах расположения рамок RР1 и RР2; k1, k2 – постоянные коэффициенты, определяемые геометрическими размерами рамок и числом витков проводов в них.
Размеры обеих рамок и число витков в них одинаковы, поэтому уравнение (1) принимает вид
. (3.4)
Отношение магнитных индукций есть функция угла поворотаподвижной части, зависящая от формы полюсных наконечников. Тогда уравнение (15) можно представить в виде
. (3.5)
С учетом значений токов J1 и J2
, (3.6)
а так как сопротивления RР1, RР2, R и Rл являются постоянными, то
. (3.7)
Следовательно, отклонение стрелки логометра зависит только от сопротивления RТ, определяемого температурой преобразователя. Это позволяет для данного типа преобразователя сопротивления производить градуировку шкалы логометра в °С. Кроме того, из уравнений (3) и (5) следует, что каждому значению RТ соответствует определенное отношение независимо от напряженияЕ источника питания. Однако для логометра отклонение напряжения источника питания от номинального допускается в пределах ±20%, так как при малом напряжении возрастает влияние упругости проводников, подводящих ток к рамкам, и сил трения при перемещении подвижной части, а при большом происходит нагрев измерительным током обмотки термометра и рамок прибора, вызывающий изменение соотношения токов в цепях логометра.
- Автоматическое управление. Системы автоматического управления. Область применения.
- Объекты управления. Воздействия на объекты управления.
- Объекты управления. Статические и динамические характеристики. Режимы эксплуатации.
- Устойчивость объектов управления.
- Теплотехнические объекты управления.
- Структура систем автоматического управления (сау). Виды сау.
- Задачи систем автоматического управления.
- Типовые виды внешних воздействий.
- Типовые звенья. Безынерционное звено.
- Типовые звенья. Апериодическое звено.
- Типовые звенья. Колебательное звено.
- Типовые звенья. Интегрирующее звено.
- Температурные шкалы.
- Класс точности. Вариация и чувствительность приборов.
- Классификация методов измерения.
- Классификация измерительных приборов.
- Поверка. Прямые или косвенные измерения.
- Виды поверки
- Манометрические термометры. Устройство. Принцип действия.
- Дилатометрические и биметаллические термометры. Принцип действия.
- Термометры расширения подразделяются на:
- Термоэлектрический метод измерения температуры.
- Термобатареи. Дифференциальные термометры. Принцип действия.
- Поправка на температуру свободных концов.
- Требования к термоэлектродным материалам.
- Компенсационный метод измерения термо-эдс.
- Потенциометры. Устройство. Принцип действия.
- Милливольтметры. Устройство. Принцип действия.
- Описание лабораторного стенда
- Автоматические потенциометры. Принцип действия.
- Электрические термометры сопротивления. Устройство. Принцип действия. Требования к установке.
- Термопреобразователи сопротивления
- Требования, предъявляемые к материалам термометров сопротивления.
- Полупроводниковые термометры сопротивления (терморезисторы).
- Двух и трехпроводная схема соединения логометра с термометрами сопротивления. Промышленные логометры
- Логометры. Устройство. Принцип действия.
- Автоматические уравновешенные мосты. Устройство. Принцип действия.
- Электронные термопреобразователи. Структура. Назначение.
- Бесконтактные методы измерения температур. Л №7-8
- Оптические пирометры. Устройство. Принцип действия.
- Фотоэлектрический метод измерения температур.
- Радиационные пирометры. Принцип действия.
- Пирометры спектрального отношения.
- Классификация приборов для измерения давления.
- Деформационные манометры. Устройство. Принцип действия.
- Электрические манометры. Принцип действия.
- Жидкостные дифманометры. Устройство. Принцип действия.
- Классификация методов и средств измерения расхода.
- Стандартные сужающие устройства.
- Измерение уровня.
- Поплавковые уровнемеры
- Буйковые уровнемеры
- Гидростатические уровнемеры
- Емкостные уровнемеры
- Радиоизотопные уровнемеры
- Ультразвуковые и акустические уровнемеры
- Общие сведения о газовом анализе.