4.2.3. Принципиальные схемы абсорбции
В химической технологии используют следующие принципиальные схемы абсорбционных процессов: прямоточные, противоточные, одноступенчатые с рециркуляцией и многоступенчатые с рециркуляцией.
Прямоточная ипротивоточнаясхемы взаимодействия фаз в процессе приведены на рис. 3.13.
Рис. 3.13. Прямоточная (а) и противоточная (б) схемы абсорбции
В прямоточной схеме потоки газа и жидкости движутся параллельно друг другу. Газ с большей концентрацией распределяемого вещества контактируется с жидкостью, имеющей меньшую концентрацию распределяемого компонента, а газ с меньшей концентрацией взаимодействует на выходе аппарата с жидкостью, имеющей большую концентрацию распределяемого вещества.
В противоточной схеме в одном конце аппарата приводятся в контакт газ и жидкость, имеющие большие концентрации распределяемого вещества, а в противоположном конце – меньшие.
Схемы с рециркуляцией предусматривают многократный возврат в аппарат либо жидкости, либо газа. Схемы с рециркуляцией жидкости и газа показаны на рис. 3.14.
Рис. 3.14. Противоточные схемы абсорбции с рециркуляцией
жидкости (а) и газа (б)
Газ проходит через аппарат снизу вверх, и концентрация распределяемого вещества в нем изменяется от до. Абсорбент подводится к верхней части аппарата при концентрации распределяемого вещества, затем смешивается с выходящей из аппарата жидкостью, в результате чего концентрация повышается до. Значениенесложно вычислить из уравнения материального баланса.
Введя обозначение кратности рециркуляции , представляющей собой отношение количества абсорбента на входе в аппарат к количеству свежей жидкости, получим
;
.
Кратность рециркуляции по газу . Ординатав этом случае определяется из материального баланса
;
.
Одноступенчатые схемы с рециркуляцией могут быть противоточными и прямоточными.
Многоступенчатые схемы с рециркуляцией могут включать прямой ток, противоток, рециркуляцию жидкости и рециркуляцию газа. Большое практическое значение имеет многоступенчатая противоточная схема с рециркуляцией жидкости в каждой ступени (рис. 3.15).
Рис. 3.15. Многоступенчатая противоточная схема абсорбции
с рециркуляцией жидкости
Рабочие линии наносят на диаграмму отдельно для каждой ступени, как и в случае нескольких одноступенчатых аппаратов.
Применение схем с рециркуляцией абсорбента целесообразно в следующих случаях: когда сопротивление массопередаче сосредоточено в жидкой фазе; при необходимости охлаждать абсорбент в процессе абсорбции; для улучшения смачивания насадки (при малых плотностях орошения). Однако рециркуляция жидкости ведет к усложнению абсорбционных установок и дополнительным расходам энергии на перекачивание рециркулирующей жидкости.
Схемы установок, приведенные на рис. 3.133.15, относятся к насадочным абсорберам, в которых затруднительна организация внутреннего отвода тепла в процессе абсорбции. В тарельчатых абсорберах охлаждающие устройства (например, змеевики) устанавливают на тарелках.
- Минобрнауки рф
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Тепловые процессы и аппараты
- 2.1. Способы передачи теплоты
- 2.2. Тепловые балансы
- 2.3. Температурное поле и температурный градиент
- 2.4. Передача тепла теплопроводностью
- 2.5. Тепловое излучение
- 2.6. Конвективный теплообмен
- 2.6.1. Теплоотдача
- 2.6.2. Дифференциальное уравнение конвективного теплообмена
- 2.6.3. Подобие процессов теплообмена
- 2.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 2.6.5. Теплоотдача при изменении агрегатного состояния
- 2.7. Сложный теплообмен
- 2.8. Процессы нагревания, охлаждения и конденсации
- 2.9. Теплообменные аппараты
- 2.9.1. Классификация и типы теплообменных аппаратов
- 2.9.2. Расчет теплообменных аппаратов
- 2.9.3. Выбор и проектирование поверхностных теплообменников
- 3. Массообменные процессы и аппараты
- 3.1. Основы массопередачи
- 3.1.1. Общие сведения о массообменных процессах
- 3.1.2. Основные расчетные зависимости массообменных процессов
- 3.1.3. Материальный баланс массообменных процессов
- 3.1.4. Движущая сила массообменных процессов
- 3.1.5. Модифицированные уравнения массопередачи
- 3.1.6. Основные законы массопередачи
- 3.1.7. Подобие процессов переноса массы
- 3.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 3.2. Абсорбция
- 3.2.1. Равновесие при абсорбции
- 3.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 3.2.4. Конструкции колонных абсорбционных аппаратов
- 3.2.5. Десорбция
- 3.3. Перегонка жидкостей
- 3.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 3.3.4. Ректификация многокомпонентных смесей
- 3.3.5. Тепловой баланс процесса ректификации
- 3.3.6. Специальные виды перегонки
- 3.3.7. Устройство ректификационных аппаратов
- 3.4. Экстракция
- 3.4.1. Жидкостная экстракция
- 3.4.2. Равновесие при экстракции
- 3.4.3. Материальный баланс экстракции
- 3.4.4. Кинетические закономерности процесса экстракции
- 3.4.5. Принципиальные схемы процесса экстракции
- 3.4.6. Конструкции экстракторов
- 3.5. Адсорбция
- 3.5.1. Равновесие в процессах адсорбции
- 3.5.2. Промышленные адсорбенты
- 3.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 3.6. Сушка
- 3.6.1. Равновесие в процессах сушки
- 3.6.2. Конструкции сушилок и области их применения
- 3.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке: