3.5. Адсорбция
Адсорбциейназывается процесс разделения, основанный на поглощении газов или паров из газовых смесей или растворенных веществ из растворов твердыми пористыми поглотителями.
Твердый пористый поглотитель называется адсорбентом, поглощаемое вещество –адсорбтивом.
Явление адсорбции объясняется наличием притяжения между молекулами адсорбента и адсорбтива. Оказывается, что на границе раздела фаз действуют неодинаковые силы притяжения со стороны молекул носителя и адсорбента. Молекулы адсорбтива, переходя на поверхность адсорбента, уменьшают ее свободную энергию, в результате чего выделяется тепло.
Силы притяжения со стороны адсорбента могут быть либо физическими (Ван-дер Ваальсовы) или химическими. Соответственно этому различают адсорбцию физическую или химическую.
При физической адсорбции выделяется незначительное количество теплоты. Физическая адсорбция обратима (десорбция). После химической адсорбции обратимый процесс практически неосуществим.
Разновидностью адсорбции является капиллярная конденсация. Капиллярная конденсация зависит от связей вещества, находящихся на поверхности твердого поглотителя в жидком состоянии.
Если жидкость смачивает поверхность адсорбента, то происходит конденсация пара с заполнением объема капилляров этой жидкостью. Явление капиллярной конденсации основано на понижении давления pнаснад вогнутой поверхностью жидкости в капилляре. Перечисленные виды адсорбции сопутствуют друг другу.
Количество вещества, поглощаемого адсорбентом, определяется состоянием равновесия и зависит: от природы адсорбента и адсорбтива, концентрации адсорбтива в исходной смеси, давления и температуры, а также влажности адсорбента.
Адсорбция чаще всего применяется при малых концентрациях адсорбтива в исходной смеси, когда требуется возможно более полное его поглощение. При высоких исходных концентрациях адсорбтива процессу адсорбции нередко предшествуют другие поглотительные процессы (например, абсорбция), с помощью которых концентрация распределяемого компонента в распределяющей фазе снижается до достаточно низкой величины, после чего и ведется глубокая доочистка газа, жидкости методом адсорбции.
Адсорбция используется для очистки газовых (жидких) смесей от нежелательной примеси или для выделения этой примеси в качестве целевого продукта; оптимальной является реализация совместно обеих целей, т.е. приближение технологии к безотходной.
Особенностью процесса адсорбции является его избирательностьиобратимость. Благодаря этой особенности процесса возможно поглощение из парогазовых смесей или растворов одного или нескольких компонентов, а затем в других условиях, проводить их десорбцию, т.е. выделение нужного компонента из твердой фазы в более или менее чистом виде.
Благодаря селективности поглощения различных компонентов адсорбция является одним из эффективных процессов разделения. Вместе с тем она составляет одну из стадий проведения гетерогенной химической реакции – каталитической или некаталитической. В тех случаях, когда сама реакция идет быстро, а пропускная способность адсорбционно-десорбционной стадии мала, адсорбция (или десорбция) может выступать в роли лимитирующей стадии процесса химического превращения в целом.
После осуществления адсорбции, как правило, производят десорбцию поглощенного компонента. Это позволяет вновь использовать освобожденный от компонента адсорбент. Промышленные адсорбенты чаще всего очень дороги, так что одноразовое их использование экономически невыгодно, иногда – просто недопустимо. После десорбции обычно необходимо провести активацию адсорбента, чтобы восстановить его адсорбционные свойства. Стадии десорбции и активации адсорбента составляют регенерацию. После регенерации адсорбент готов к повторному использованию.
Адсорбция широко применяется в химической технологии:
- для осушки газов и их очистки с выделением ценных компонентов;
- для извлечения (регенерации) растворителей из газовых (паровых) или жидких смесей;
- для осветления растворов;
- для очистки газовых выбросов и сточных вод;
- в аналитических целях (например, методы хроматографии основаны на сорбционных эффектах), а также для других случаев.
- Минобрнауки рф
- 1.1. Классификация основных процессов и аппаратов
- 1.2. Кинетические закономерности основных процессов
- 1.3. Общие принципы расчёта химических машин и аппаратов
- 1.4. Применение метода моделирования для исследования и расчета процессов и аппаратов
- 2. Тепловые процессы и аппараты
- 2.1. Способы передачи теплоты
- 2.2. Тепловые балансы
- 2.3. Температурное поле и температурный градиент
- 2.4. Передача тепла теплопроводностью
- 2.5. Тепловое излучение
- 2.6. Конвективный теплообмен
- 2.6.1. Теплоотдача
- 2.6.2. Дифференциальное уравнение конвективного теплообмена
- 2.6.3. Подобие процессов теплообмена
- 2.6.4. Теплоотдача при свободном и вынужденном движении жидкости
- 2.6.5. Теплоотдача при изменении агрегатного состояния
- 2.7. Сложный теплообмен
- 2.8. Процессы нагревания, охлаждения и конденсации
- 2.9. Теплообменные аппараты
- 2.9.1. Классификация и типы теплообменных аппаратов
- 2.9.2. Расчет теплообменных аппаратов
- 2.9.3. Выбор и проектирование поверхностных теплообменников
- 3. Массообменные процессы и аппараты
- 3.1. Основы массопередачи
- 3.1.1. Общие сведения о массообменных процессах
- 3.1.2. Основные расчетные зависимости массообменных процессов
- 3.1.3. Материальный баланс массообменных процессов
- 3.1.4. Движущая сила массообменных процессов
- 3.1.5. Модифицированные уравнения массопередачи
- 3.1.6. Основные законы массопередачи
- 3.1.7. Подобие процессов переноса массы
- 3.1.8. Связь коэффициентов массопередачи и массоотдачи
- 4.1.9. Массопередача с твердой фазой
- 3.2. Абсорбция
- 3.2.1. Равновесие при абсорбции
- 3.2.2. Материальный, тепловой балансы и кинетические закономерности абсорбции
- 4.2.3. Принципиальные схемы абсорбции
- 3.2.4. Конструкции колонных абсорбционных аппаратов
- 3.2.5. Десорбция
- 3.3. Перегонка жидкостей
- 3.3.1. Идеальные и неидеальные смеси
- 4.3.2. Простая перегонка
- 4.3.3. Ректификация
- 3.3.4. Ректификация многокомпонентных смесей
- 3.3.5. Тепловой баланс процесса ректификации
- 3.3.6. Специальные виды перегонки
- 3.3.7. Устройство ректификационных аппаратов
- 3.4. Экстракция
- 3.4.1. Жидкостная экстракция
- 3.4.2. Равновесие при экстракции
- 3.4.3. Материальный баланс экстракции
- 3.4.4. Кинетические закономерности процесса экстракции
- 3.4.5. Принципиальные схемы процесса экстракции
- 3.4.6. Конструкции экстракторов
- 3.5. Адсорбция
- 3.5.1. Равновесие в процессах адсорбции
- 3.5.2. Промышленные адсорбенты
- 3.5.3. Конструкции адсорбционных аппаратов и методы проведения адсорбционно-десорбционных процессов
- 3.6. Сушка
- 3.6.1. Равновесие в процессах сушки
- 3.6.2. Конструкции сушилок и области их применения
- 3.6.3. Материальный и тепловой балансы сушки
- Количество влаги, удаляемой в сушилке: