Т а б л и ц а 9.1. Подбор сечений стержней легких ферм
Коэффициент “”, является функцией гибкости и типа сечения (см. прил.8).
Для подбора сечения необходимо наметить тип сечения, задаться гибкостью стержня, определить коэффициент “” по прил.8 и найти требуемую площадь сечения
(9.6)
При предварительном подборе можно принять для поясов легких ферм , а для решетки. Большие значения гибкости применяются при меньших усилиях.
По требуемой площади подбирается по сортаменту подходящий профиль, определяются его фактические геометрические характеристики А, ,, находятся;. При большей гибкости уточняется коэффициент “” и проводится проверка устойчивости по формуле (9.5). Если гибкость стержня предварительно была задана неправильно и проверка показала перенапряжение или значительное (больше 5-10%) недонапряжение, то проводят корректировку сечения, принимая промежуточное значение между предварительно заданным и фактическим значениями гибкости. Второе приближение, обычно, достигает цели.
Местную устойчивость сжатых элементов можно считать обеспеченной, если толщина полок и стенок профилей больше, чем требуется из условия устойчивости.
Для составных сечений предельные гибкости полок и стенок определяются в соответствии с нормами (см.гл.2).
Пример 9.1. Требуется подобрать сечение верхнего пояса фермы по расчетному усилию
N = 535кН.
Расчетные длины стержня lx= 2.58;ly= 5.16м. Материал – сталь С245;Ry= 24кН/см2. Коэффициент условий работыγс= 0,95; толщина фасонки 12мм. Посколькуly= 2lx, принимаем тавровое сечение из двух не равнополочных уголков, расположенных узкими полками вместе. Задаемся гибкостью в пределах, рекомендуемых для поясов:λ= 80. Принимаемому сечению соответствует тип кривой устойчивости с и, следовательно, при= 80= 2,73, φ = 0,611.
Требуемая площадь сечения Атр=N/(φRyγc) = 535/(0.611= 38.4см2.
Принимаем сечение из двух уголков 125x80x10, поставленных вместе меньшими полками; А= 19,7x2 = 39,4;ix = 2.26см;iy= 6,19см (следует обратить внимание, что индексы расчетных осей и осей по сортаменту для не равнополочных уголков могут не совпадать);
λx = 258/2.26 = 114;λy = 516/6,19 = 83;= 3,89;φ= 0,417;
N/(φA) = 535/(39.4= 32.6кН/см2 >Ryφc = 22.8кН/см2
Сечение подобрано неудачно и имеет большое перенапряжение. Принимаем гибкость (между предварительно заданной и фактической) λ= 100;
φ= 0,49;
Атр= 535/(0,49
Принимаем два уголка: 160x100x9;А= 22,9= 45,8см2;ix= 2.85см (iyне лимитирует сечение);λx = 258/2.85 = 90.5;
φ= 0,546;
N/(φA) = 535/(0.546= 21.4кН/см2<Ryγc = 22.8кН/см2
Оставляем принятое сечение из двух уголков размером 160x100x9.
- Чугунная арка, пролетом 30м применена в перекрытии
- Б) газгольдер мокрый
- Раздел 1. Элементы металлических конструкций
- Номенклатура и область применения металлических конструкций
- 1. Условия эксплуатации.
- Свойства и работа строительных сталей и алюминиевых сплавов
- 1.3. Классификация сталей
- 1.4. Выбор сталей для строительных конструкций.
- 1.5. Влияние различных факторов на свойства стали
- 1.6. Виды разрушений
- 1.7. Работа металла под нагрузкой
- Р а з д е л 2. Основы расчета металлических конструкций
- 2.1. Основные понятия и определения
- 2.2. Основные положения расчета металлических конструкций
- 2.3.Классификация нагрузок и их сочетаний
- 2.4. Напряженное и деформированное состояние центрально нагруженных элементов
- 2.5. Основы расчета изгибаемых элементов
- 2.6. Основы расчета центрально сжатых стержней
- 2.7. Основы расчета на прочность стержней, работающих на сжатие или растяжение с изгибом
- 2.8. Основы расчета на устойчивость внецентренно сжатых и сжато - изогнутых стержней
- 2.9. Расчет элементов металлических конструкций при воздействии переменных нагрузок (проверка на усталость)
- Раздел 3. Сортамент
- 3.1. Характеристика основных профилей сортамента
- 3.2. Листовая сталь
- 3.5. Двутавры
- 3.6. Тонкостенные профили
- 3.7. Трубы
- 3.8. Холодногнутые профили
- 3.9. Различные профили и изделия из металла, применяемые в строительстве
- 3.10. Профили из алюминиевых сплавов
- 3.11. Правила использования профилей в строительных конструкциях
- Раздел 4. Сварные соединения
- Виды сварки, применяемые в строительстве
- Виды сварных швов и соединений
- Т а б л и ц а 4.1. Виды сварки в зависимости от толщины шва (двусторонняя или с подваркой корня)
- Конструирование и работа сварных соединений
- Расчет сварных соединений
- Т а б л и ц а 4.2. Материалы для сварных соединений стальных конструкций
- Раздел 9. Фермы
- 9.1 Классификация ферм и область их применения
- Расстояние между соседними узлами поясов называется панелью
- – Пролетом (l). Пояса ферм работают на продольные усилия и момент (аналогично поясам
- 9.2. Компоновка конструкций ферм
- (Б) укрупнительных стыках
- В покрытиях зданий из-за большого числа поставленных рядом плоских стропильных ферм решение усложняется, поэтому фермы, связанные между собой только прогонами могут потерять устойчивость.
- 9.3. Типы сечений стержней ферм
- 9.4. Расчет ферм
- 9.5. Определение усилий в стержнях ферм
- 9.6. Определение расчетной длины стержней
- 9.7. Предельные гибкости стержней
- 9.8. Подбор сечений элементов ферм
- 9.9. Подбор сечений сжатых элементов
- Т а б л и ц а 9.1. Подбор сечений стержней легких ферм
- 9.10. Подбор сечения растянутых элементов
- 9.12. Подбор сечения стержней по предельной гибкости
- 9.14. Конструкция легких ферм
- Резку стержней решетки производят, нормально к оси стержня, для крупных стержней допускают косую резку с целью уменьшения размеров фасонки.
- 9.15. Фермы из одиночных уголков
- 9.17. Ферма с поясами из широкополочных тавров
- 9.19. Укрупнительный стык стропильной фермы из парных уголков а – на сварке; б – на болтах; 1 – линия сгиба стыковой накладки
- .9.20. Опорные узлы ферм из парных уголков
- Т а б л и ц а 9.3. Значения коэффициента ξ
- Толщину стенок стержней принимать не менее 3 мм. Применение профилей одинаковых размеров сечения, отличающихся толщиной стенок менее чем
- Узлы ферм из открытых гнутых профилей можно выполнять без фасонок.
- 9.20. Оформление рабочего чертежа легких ферм (кмд)
- 9.21. Узлы тяжелых ферм