10.1.2. Основное уравнение центробежного насоса
Несмотря на простоту конструкции центробежного насоса, движение жидкости внутри него, особенно в межлопастном пространстве, довольно сложное. Для объяснения движения жидкости в рабочем колесе насоса существуют две теории. Первая – вихревая (теория Н.Е. Жуковского). Суть ее заключается в том, что лопасть рабочего колеса, при обтекании которого возникает подъемная сила, заставляющая перемещать жидкость внутри колеса (рис.10.2)
Рис.10.2
Вихревая теория более приемлема для объяснения работы осевых насосов и менее удобна для центробежных.
Вторая – струйная (теория Л.Эйлера). Суть этой теории заключается в том, что сложное движение жидкости внутри рабочего колеса насоса идеализируется и принимается строго упорядоченным – струйным. Для этого рабочее колесо должно иметь бесконечно большое число бесконечно тонких лопастей.
для такого упорядоченного движения жидкости можно представить параллелограммы скоростей на входе и выходе лопастей (рис.10.3) с индексами «1» - на входе и «2» - на выходе. Для этого выделим только одну лопасть (рис.10.3).
Рис.10.3
При вращении рабочего колеса с угловой скоростью жидкость приобретает переносную скоростьU, направленную касательно к окружностям радиусов r1 и r2: U = Ωr. При бесконечно большом числе лопастей траектория каждой струйки будет соответствовать профилю лопасти, поэтому под действием центробежной силы каждая частица жидкости относительно и касательно к лопасти приобретает относительную скорость W. Угол между относительной скоростью и обратным направлением переносной скоростью называют углом наклона лопастей β1 и β2.
Для вывода основного уравнения центробежного насоса воспользуемся теоремой механики об изменении момента количества движения для движущейся жидкости, которую в этом случае можно сформулировать так:
Изменение момента количества движения массы жидкости в единицу времени относительно оси вращения рабочего колеса равно сумме моментов всех внешних сил относительно той же оси, т.е. крутящему моменту.
Иллюстрация теоремы представлена на рис.10.4.
Рис. 10.4
В потоке жидкости, сходящей с лопастей рабочего колеса центробежного насоса, происходит непрерывное увеличение момента количества движения в результате также непрерывного подвода к жидкости механической энергии от двигателя, вращающего рабочее колесо.
Целью вывода указанного уравнения является получение уравнения напора, развиваемого центробежным насосом.
Рассмотрим элементарную струйку, движущуюся вдоль лопасти рабочего колеса насоса.
Моменты количества движения струйки:
на выходе из колеса
;
на входе в колесо
.
Изменение момента количества движения
.
Для всей совокупности струек Q = Σq; ΣΔМ` = М. тогда
.
Так как ;N = ,
=.
Так как Ω·r=U, то
. (10.1)
При проектировании центробежных насосов угол α1=90°, т.е. отсутствует предварительная закрутка жидкости; тогда
. (10.2)
Так как С2·сosα2=C2u, тогда
. (10.3)
Из параллелограмма скоростей следует, что ; с учетом этого можно записать
. (10.4)
Каждая в отдельности зависимость (10.1, 10.2, 10.3, 10.4) является основным уравнением центробежного насоса, из которого следует основной вывод, что развиваемый напор не зависит от рода перекачиваемой жидкости.
В действительности такой напор насос развить не может, так как число лопастей у реального насоса не бесконечное, а конечное. В этом случае мгновенной передачи механической энергии жидкости не произойдет. Учитывается этот факт коэффициентом ε=0,7…0,9.
Теперь уже в реальном насосе с конечным числом лопастей произойдут гидравлические потери вследствие вихреобразования при движении жидкости в рабочем колесе, а также в результате недостаточно плавного входа потока на рабочее колесо (потери на удар при входе) и, наконец, в результате трения жидкости о лопасти и стенки корпуса насоса.
Таким образом, аналитическое выражение действительного напора реально насоса имеет вид
. (10.5)
Из уравнений (10.1 - 10.5) следует, что развиваемый центробежным насосом напор зависит в основном от двух факторов: частоты вращения колеса и его диаметра. Для цели получения большего напора тот и другой путь весьма ограничен, поэтому для достижения более высокого напора насосы выполняют многоступенчатыми, когда на одном валу могут быть смонтированы от двух до нескольких сот рабочих колес. Жидкость, поступая от одной ступени к другой, последовательно увеличивает свой напор.
- «Челябинский государственный агроинженерный
- Университет»
- Гидравлика
- Челябинск
- Введение
- Раздел 1 Гидравлика
- Силы, действующие в жидкости
- 2. Физические свойства жидкости
- 2.1. Плотность и удельный вес жидкости
- 2.2. Сжимаемость жидкости
- 2.3. Температурное расширение жидкости
- 2.4. Вязкость жидкостей
- 3. Гидростатика
- 3.1. Свойства гидростатического давления
- 3.2. Дифференциальные уравнения равновесия жидкости (уравнения Леонарда Эйлера)
- 3.3. Основное уравнение гидростатики. Эпюры гидростатического давления
- 3.4. Сила гидростатического давления на плоские поверхности
- 3.5. Сила гидростатического давления, действующая на криволинейные поверхности
- 3.6. Закон Архимеда. Основы теории плавания
- 3.7. Гидростатические машины и механизмы
- 4. Гидродинамика
- 4.1. Основные понятия
- 4.2. Уравнение неразрывности (сплошности)
- 4.3. Уравнение д.Бернулли для элементарной струйки идеальной жидкости. График уравнения д.Бернулли
- 4.4. Уравнение д.Бернулли для элементарной струйки реальной жидкости. График уравнения д.Бернулли
- 4.5. Уравнение д.Бернулли для потока реальной жидкости
- 5. Определение гидравлических потерь
- 5.1. Классификация потерь напора
- 5.2. Основное уравнение равномерного движения
- 5.3. Формулы для определения гидравлических потерь
- 5.4. Режимы движения жидкости. Критерий рейнольдса
- 5.5. Особенности ламинарного режима движения жидкости
- 5.6. Особенности турбулентного режима движения жидкости
- 5.7. Влияние режима движения жидкости и шероховатости на величину коэффициента трения в трубах (график Никурадзе)
- 6. Гидравлический расчет трубопроводов
- 6.1. Классификация трубопроводов
- 6.2. Расходная характеристика трубопровода (модуль расхода)
- 6.3. Гидравлические характеристики трубопроводов
- 6.4. Равномерный путевой расход
- 6.5. Гидравлический удар в трубопроводах. Гидравлический таран
- 7. Истечение жидкости из отверстий и насадков
- 7.1. Истечение жидкости из малого отверстия в тонкой стенке
- 7.2. Истечение жидкости через насадки
- 8. Гидравлическое моделирование
- 8.1. Сущность моделирования
- 8.2. Основные законы гидродинамического подобия. Критерий подобия Ньютона
- 8.3. Критерий подобия Рейнольдса, Фруда, Эйлера, Вебера
- Раздел 2 Гидравлические машины
- 9. Насосы
- 9.1. Классификация насосов
- 9.2. Основные параметры насосов
- 9.2.1. Напор, развиваемый насосом
- 9.2.2. Мощность и кпд насоса
- 9.3. Область применения насосов
- 10. Динамические насосы
- 10.1. Центробежные насосы
- 10.1.1. Схема устройства и принцип действия
- 10.1.2. Основное уравнение центробежного насоса
- 10.1.3. Подача центробежного насоса
- 10.1.4. Теоретические характеристики центробежного насоса
- 10.1.5. Действительная характеристика центробежного наоса
- 10.1.6. Универсальные характеристики центробежного насоса
- 10.1.7. Процесс всасывания и явление кавитации в центробежном насосе
- 10.1.8. Законы пропорциональности центробежного насоса
- 10.1.9. Работа центробежного насоса на сеть
- 10.1.10. Регулирование работы центробежного насоса
- 10.1.11. Совместная работа центробежных насосов
- 10.1.12. Центробежные насосы специального назначения
- 10.2. Насосы трения
- 10.2.1. Вихревые насосы
- 10.2.2. Струйные насосы
- 10.2.3. Воздушные насосы
- 10.2.4. Шнековые насосы
- 10.2.5. Дисковые насосы
- 10.2.6. Лабиринтные насосы
- 10.2.7. Вибрационные насосы
- 11. Объемные насосы
- 11.1. Возвратно - поступательные насосы
- 11.2. Роторные насосы
- Раздел 3 гидравлическиЙ привод
- 12. Классификация
- 13. Объемный гидропривод
- 13.1. Функциональная схема
- 13.2. Принципиальная схема гидропривода
- 13.3. Область применения объемных гидроприводов
- 13.4. Достоинства и недостатки объемных гидроприводов
- 13.5. Требования к рабочей жидкости
- 13.6. Объемный гидропривод возвратно-поступательного движения
- 13.7. Принцип расчета гидропривода
- 13.8. Объемный гидропривод вращательного движения
- 13.9. Регулирование скорости гидропривода
- 13.9.1. Объемное регулирование
- 13.9.2. Дроссельное регулирование
- 13.10. Следящий гидропривод
- 14. Гидролинии, гидроемкости, фильтры
- Раздел 4 сельскохозяйственное водоснабжение
- 15. Системы водоснабжения. Классификация.
- Слово о воде
- 16. Водоснабжение из поверхностных источников
- 17. Водоснабжение из подземных источников
- 18. Водонапорные и регулирующие устройства
- 19. Требования, предъявляемые к качеству хозяйственно–питьевой воды. Методы улучшения качества воды
- 20. Основные данные для проектирования водопроводной сети
- Раздел 5 Водоотведение
- 21. Основы канализации
- 22. Уловители нефтепродуктов
- Литература
- Содержание