5.1.3. Схема технологических зон горна электропечи
Приведенные данные дают возможность посмотреть на процесс плавки более глубоко с позиции распределения в горне температурных зон и представить общую схему горна с разбивкой на главные технологические зоны с представлением механизма последовательного восстановления шихты с учетом противотока продуктов и химизма реагирования, учитывая все промежуточные реакции с получением конечных продуктов. Результаты представлены на рис. 3 в виде развертки кольцевого цилиндрического горна.
Горн по вертикали можно разбить на пять технологических зон, каждая из которых характеризуется своей температурной вероятностью протекания одной или нескольких реакций в пределах температур, соответствующих началу и окончанию взаимодействия.
Специфические особенности работы технологических зон в рядке их расположения в горне, следующее:
Зона 1. 500-1350 оС (фактически до 1710 оС - температуры плавления кварцита и стекания остатков шихты вниз). Нагрев шихты, испарение влаги, пиролиз углеводородов, восстановление металлов - примесей (железо и др.), фильтрация и адсорбция газов и паров.
Зона 2. 1350-1475 оС. Низкотемпературное восстановление SiO2 до SiC по реакции (1). См. рис. 3. Здесь закладывается основа полноты восстановления и извлечения кремния. Успех последующего довосстановления в зоне 5 SiO по гетерогенным peaкциям (4), (3) и (5) определяются качеством генерированного по реакции (1) SiC, который является метаморфозой структуры углеродистого восстановителя и повторяет его реакционную способность. Происходит также фильтрация и адсорбция газов и паров.
Зона 3. 1625-1850 оС. Низкотемпературное замедленное восстановление кремнезема по реакции (2), при зависании шихты с образованием SiO, часть которого может находиться в газообразном состоянии и выдуваться из слоя реакционными газами. Фильтрация и адсорбция газов и паров. Плавление и отекания вниз кварцита и смывание остатков С и SIC.
Зона 4. 1710-1900 оС. Диспропорционирование SiO по реакции (6) при выдувании и охлаждении реакционного газа из высокотемпературной зоны нижней части горна. Продукты реакции (6) – Si и SIO2 дисперсны. Степень их выноса и потерь определяются фильтрующей и адсорбирующей способностью колошника.
Зона 5. 1900-2670°С. Высокотемпературное ускоренное восстановление SiO, выдуваемого из горна, по однотипным реакциям (3) и (5) в противотоке с SIC, смываемым вниз расплавленным кварцитом, до 2300 оС и по реакции (4) - продолжение предыдущего этапа взаимодействия при повышении температуры до 2670 оС с получением Sir.
В нижней части зоны при 2300-2670°С происходит высокотемпературное довосстановление кремнезема из провалившейся при опиковке в глубину горна шихты и стекших вниз по стенкам расплавленных остатков кварцита и восстановителя. Ускоренное восстановление из провалившейся шихты Si02 по реакции (2).
При недостатке твердого восстановителя возможно металлотермическое довосстановление SiO2 из шлама при температуре более 1861 оС жидким кремнием с газификацией кремнезема до SiOr по реакции (7). В нижнем придонном слое реакция (7) тормозится снижением температуры кремния ниже указанного предела из-за высокой теплопроводности углеродистой футеровки пода печи. Газообразный продукт реакций (2) и (7) - SiO быстро довосстанавливается сразу же после образования по реакциям (4), (3), (5) в высокотемпературной зоне 5. Здесь образуется основное количество кремния, который стекает под электрод. В нем запутываются остатки недовосстановленного шлака. При подъеме газов вверх и охлаждении ниже 2300°С из них конденсируется Siж.
Приведенные данные показывают, что в горне электропечи имеет место своеобразный технологический парадокс, заключающийся в том, что получение кремния возможно только при высокой температуре в глубине горна, а образование промежуточного продукта – SiO2 начинается при недостаточной для полного восстановления температуры верхней части горна, в связи с чем, ощутимая часть SiO2 может выдуваться реакционными газами.
Получение печного восстановления кремнезема зависит, прежде всего, от скорости нагрева шихты и температурных условий. Практически это определяется режимом протекания реакции (2) и условиями образования летучего монооксида кремния.
Протекание реакции (2) при зависании шихты на колошнике в технологической зоне 3 может явиться мерилом величины потерь Si0 с реакционными газами. В этом случае снижение потерь Si, может обеспечить только фильтрация газов через колошниковый слой шихты (зоны 1 и 2) и будет зависеть от фильтрующих и адсорбирующих свойств шихтовых материалов, в первую очередь восстановителя.
Протекание реакции (2) при высокой температуре при осадке шихты и отекании остатков жидкого кварцита в технологически зону обеспечивает быстрое восстановление до кремния, а также газификацию кремнезема из остатков шихты и шлака до Si0 и его последующее довосстановление.
Главными реакциями получения кремния являются реакции (5), (3) и (4), протекающие в технологической зоне 5 при температуре выше 2000 оС.
Причиной образования Si0, как неизбежного промежуточного продукта реагирования, являются реакции (2) и (7). При правильной загрузке шихты и нормальном ходе плавки решающее значение будет иметь непрерывный сход шихты и быстрое протекание в глубине горна реакции (2) и основных реакций довосстановления Si0 до Si (4), (3) и (5).
При недостатке восстановителя в балансе получения кремния начинает возрастать значение реакции (7). Эта реакция в зоне 5 является, по-видимому, фактором, приводящим к снижению содержания шлака в кремнии при выпуске из горна до 1-З%.
О роли реакции диспропорционирования (6) имеются следующие соображения.
Во-первых, это признак работы печи в неоптимальных условиях при недовосстановлении Si0 до Si. Во-вторых, роль реакций (6) в общей схеме процесса возрастает при отступлении от оптимальных условий плавки со всеми вытекающими последствиями. И, в-третьих, это источник появления дисперсного конденсированного продукта - смеси SiO2 и Si, обреченного на частичную или полную потерю с газами из-за плохой фильтрации слоем шихты. Улавливание его может быть эффективным при использовании восстановителей, обладающих высокими фильтрационными и адсорбционными свойствами.
Таким образом, степень восстановления SiO2 до Si в плавке определяется несколькими факторами.
Во-первых, условиями восстановления SiO2. Чем большая часть SiO2 будет восстанавливаться в нижней высокотемпературной зоне горна, тем выше будет извлечение кремния, выше проплав и сортность, ниже расход энергии.
Во-вторых, чем выше будет реакционная способность восстановителя, тем большая часть SiO восстановится до Si и меньшая часть будет вынесена газами.
В-третьих, чем выше фильтрационная и адсорбционная способность шихты (восстановителя) будут на колошнике, тем большая часть SiO, а также Si и SlO2, полученных по реакции (6), будут уловлены и возвращены в высокотемпературную зону на довосстановление.
Извлечение кремния в плавке определяется комбинацией всех трех факторов. Очевидно, что решающее значение будет иметь первый фактор – условия восстановления и высокая температура.
Велико значение и остальных двух факторов. Оно возрастает при плохом сходе шихты в горне при ее зависании и развитии реакции (2) в верхней части печи сопровождающимся выносом SiO газом.
Вышеприведенное показывает, что наибольшее значение для плавки имеет равномерный сход шихты в высокотемпературную зону, то есть режим загрузки горна печи.
- 1 Сырые материалы доменной плавки
- 1.1 Каменноугольный кокс
- 1.1.1 Процесс коксования
- 1.1.2 Устройство коксовых печей и цехов
- 1.1.3 Качество кокса
- 1.2 Железные руды
- 1.2.1 Классификация и генезис железных руд
- 1.2.2 Оценка качества железных руд
- 1.2.3 Важнейшие месторождения железных руд
- 2 Подготовка железных руд к доменной плавке
- 2.1 Современная к схема подготовки руд к доменной плавке
- 2.2 Агломерация железных руд и концентратов
- 2.2.1 Общие вопросы
- 2.2.2 Конвейерные агломерационные машины
- 2.2.3 Реакции между твердыми фазами
- 2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- 2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- 2.2.6 Качество агломерата
- 2.3 Производство железорудных окатышей
- 2.3.1 Получение сырых окатышей
- 2.3.2 Высокотемпературное упрочнение окатышей
- 2.3.3 Получение окатышей безобжиговым путем
- 2.3.4 Металлургические свойства окатышей
- 2.3.5 Сравнение металлургических свойств агломерата и окатышей
- 2.3.6 Производство металлизованных окатышей
- 2.4 Процессы восстановления в доменной печи
- 3 Образование чугуна и его свойства
- 3.1 Интенсификация доменной плавки
- 3.1.1 Нагрев дутья
- 3.1.2 Обогащение дутья кислородом
- 3.1.3 Водяной пар в дутье
- 3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- 3.2 Профиль доменной печи
- 3.2.1 Общее понятие о профиле
- 3.2.2 Основные размеры профиля и его составные части
- 3.1. Производство стали в конвертерах.
- 3.1.1 Бессемеровский процесс.
- 3.1.2 Томасовский процесс.
- 3.1.3 Кислородно-конвертерный процесс.
- 3.3 Производство стали в мартеновских печах.
- 3.4 Производство стали в электрических печах.
- 3.5 Новые методы производства и обработки стали.
- 4 Ферросплавы
- 4.1 Введение
- 4.2 Сырые материалы
- 4.2.1 Требования к рудам и их выбор
- 4.2.2 Восстановители
- 4.2.3 Железосодержащие материалы
- 4.2.4 Флюсы
- 4.3 Основные элементы конструкции рвп
- 5 Технический (металлургический) кремний
- 5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- 5.1.1 Общие положения
- 5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- 5.1.3. Схема технологических зон горна электропечи
- 5.1.4 Влияние примесей шихты на состав технического кремния
- 5.2 Ферросилиций
- 5.2.1 Физико-химические основы получения ферросилиция.
- 5.2.2 Технология производства ферросилиция.
- 6 Сплавы марганца
- 6.1 Применение и состав сплавов марганца
- 6.2 Марганцевые руды и их подготовка к плавке
- 6.3 Производство сплавов марганца
- 6.3.1 Высокоуглеродистый ферромарганец.
- 6.3.2 Силикомарганец
- 6.3.3 Низко- и среднеуглеродистый ферромарганец.
- 6.3.4 Металлический марганец.
- 7 Общие сведения о рудах и концентратах олова
- 7.1 Требования, предъявляемые к рудам и концентратам
- 7.2 Минералы олова
- 7.3 Промышленные типы месторождений олова
- 7.4 Типы оловянных концентратов, поступающих в металлургический передел
- 7.5 Методы обогащения оловянных руд
- 7.6 Влияние типа и вещественного состава руд на их обогатимость
- 7.7 Обогащение россыпей и коренных руд олова
- 7.7.1 Обогащение оловосодержащих россыпей
- 7.7.2 Обогащение оловянных руд коренных месторождений
- 7.8 Доводка оловянных концентратов
- 7.9 Основы современной металлургии олова
- 7.10 Основы теории оловянной восстановительной плавки
- 7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- 7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- 7.10.3 Шлаки оловянной восстановительной плавки
- 7.10.4 Плавка в электрических печах
- 7.10.5 Отечественная практика электроплавки оловянных концентратов
- 7.11 Схема рафинирования олова пирометаллургическим способом
- 8 Производство свинца
- 8.1 Введение
- 8.2 Руды и концентраты
- 8.3 Способы получения свинца
- 8.4 Шихта
- 8.4.1 Состав шихты
- 8.4.2 Приготовление шихты
- 8.4.3 Агломерирующий обжиг свинцовых концентратов
- 8.5 Теория шахтной восстановительной плавки
- 8.5.1 Общие сведения
- 8.5.2 Теоретические основы восстановления окислов металлов
- 8.5.3 Восстановительная способность печи и способы ее регулирования
- 8.5.4 Шлак свинцовой плавки
- 8.5.5 Штейн и шпейза
- 8.5.6 Шахтная восстановительная плавка
- 8.5.7 Топливо
- 8.5.8 Дутье
- 8.6 Реакционная плавка свинца
- 8.6.1 Теоретическая сущность процесса
- 8.6.2 Реакционная плавка в короткобарабанной печи
- 8.7 Электроплавка свинца
- 8.7.1 Реакционная электроплавка свинца
- 8.7.2 Восстановительная электроплавка свинца
- 9.1 Общие сведения и методы получения
- 9.2 Технологические свойства
- 9.3 Области применения
- 9.4 Характеристика рудного цинкового сырья
- 9.5 Основные способы извлечения цинка из сырья
- 9.6 Обжиг цинковых сульфидных концентратов
- 9.6.1 Цели и типы обжига
- 9.6.2 Химизм процессов обжига
- 9.6.3 Обжиг цинковых концентратов для выщелачивания
- 9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- 9.8 У глетермическое восстановление цинка
- 9.8.1 Цели и типы восстановления
- 9.8.2 Химизм восстановления окисленных цинковых материалов
- 9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- 9.10 Дистилляция цинка из агломерата
- 10 Производство меди и никеля
- 10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- 10.1.1 Классификация рудного сырья
- 10.1.2 Медные руды
- 10.1.3 Никелевые руды
- 10.2 Электроплавка окисленных никелевых руд.
- 10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- 10.4 Конвертирование никелевых и медно-никелевых штейнов
- 10.4.1 Термодинамика основных реакций процесса
- 10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- 10.5 Переработка медно-никелевого файнштейна
- 10.5.1 Разделение медно-никелевого файнштепна флотацией
- 10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- 10.6 Восстановительная электроплавка закиси никеля
- 10.7 Способы получения меди из рудного сырья
- 11 Способы получения алюминия
- 11.1 Основы электролиза криолитоглиноземиых расплавов
- 11.2 Сырье и основные материалы
- 11.2.1 Основные минералы и руды алюминия
- 11.2.2 Фториды
- 11.2.3 Огнеупорные и теплоизоляционные материалы
- 11.2.4 Проводниковые материалы
- 11.3 Корректировка состава электролита
- 11.4 Выливка металла
- 11.5 Транспортно-технологическая схема цеха электролиза
- 11.6 Способы очистки отходящих газов