7.7.2 Обогащение оловянных руд коренных месторождений
Оловосодержащие руды коренных месторождений, как правило, являются комплексными. Наряду с касситеритом в них содержится сподумен, лепидолит, мусковит, в рудах пегматитовой формации — лепидолит, вольфрамит, арсенопирит, топаз, мусковит, в рудах каеситеритово-кварцевой формации —пирит, пирротин, халькопирит, арсенопирит, сфалерит, галенит, станнин, шеелит, гранат и др.
В некоторых рудах в промышленных количествах содержатся золото и серебро.
Наиболее легко обогащаются руды пегматитовой и касситеритово-кварцевой формаций, в которых легче обогащаются чисто касситеритовые руды и значительно труднее комплексные олововольфрамовые, содержащие вольфрамит, шеелит, а также олово-литиевые руды, содержащие сподумен, лепидолит, амблигонит и т. п.
Еще труднее обогащаются руды касситеритово-сульфидной формации, особенно руды, содержащие тонковкрапленный касситерит, и комплексные руды, содержащие сульфиды тяжелых цветных металлов и минералы редких металлов.
В настоящее время в отечественной и зарубежной практике обогащения при переработке коренных оловянных; руд наиболее широко применяются гравитационные методы обогащения: обогащение на отсадочных машинах, концентрационных столах, винтовых сепараторах, в тяжелых суспензиях, на автоматических шлюзах. Гравитация при значительной разнице в удельных весах касситерита (6,8—7,1) и минералов пустой породы (2,7—3,5) дает возможность получать высокое извлечение олова в черновые концентраты (70—90%), особенно при переработке крупно- и средневкрапленных руд пегматитовой и касситеритово кварцевой формации. Извлечение олова из гонковкрапленных РУД И из руд касситеритово-сульфидной формации при гравитации значительно меньше и редко превышает 70%, хотя при их переработке применяются более сложные и развитые технологические схемы обогащения. Как уже отмечалось, обогащение коренных руд складывается из двух стадий: получение чернового коллективного концентрата, в который стремятся извлечь максимально возможное количество касситерита при незначительном содержании в нем олова (10—30%), и вторая стадия — доводка черновых концентратов.
Технологические схемы обогащения различных типов коренных оловянных руд при получении черновых коллективных концентратов принципиально мало отличаются друг от друга.
При построении различных гравитационных схем обогащения коренных оловянных руд обычно стремятся осуществить следующие принципы:
Извлекать олово в черновые концентраты при максимальной крупности руды по мере раскрытия зерен касситерита.
В целях предотвращения переизмельчения касситерита (ввиду его большой хрупкости) схема обогащения должна быть многостадиальной, т. е. руду не сразу измельчают до такой крупности, при которой можно получить полное раскрытие всех; зерен касситерита, а измельчают в две-три стадии и после кaждой стадии измельчения на обогатительных аппаратах извлекают освобожденный от минералов породы касситерит.
В целях предотвращения переизмельчения касситерита процесс измельчения проводят в стержневых мельницах, в валковых дробилках и аналогичных им аппаратах (не рекомендуется применять шаровые мельницы). Причем измельчение осуществляют в замкнутом цикле не с механическими классификаторами, а с грохотами или с гидравлическими классификаторами.
В целях повышения эффективности операций гравитационного обогащения измельченную руду подвергают предварительной классификации на ряд узких классов по крупности (на грохотах) или по равнопадаемости (на гидравлических классификаторах).
Для извлечения ошламованной части касситерита в схему обогащения включают автоматические шлюзы или флотацию.
- 1 Сырые материалы доменной плавки
- 1.1 Каменноугольный кокс
- 1.1.1 Процесс коксования
- 1.1.2 Устройство коксовых печей и цехов
- 1.1.3 Качество кокса
- 1.2 Железные руды
- 1.2.1 Классификация и генезис железных руд
- 1.2.2 Оценка качества железных руд
- 1.2.3 Важнейшие месторождения железных руд
- 2 Подготовка железных руд к доменной плавке
- 2.1 Современная к схема подготовки руд к доменной плавке
- 2.2 Агломерация железных руд и концентратов
- 2.2.1 Общие вопросы
- 2.2.2 Конвейерные агломерационные машины
- 2.2.3 Реакции между твердыми фазами
- 2.2.4 Плавление шихты, кристаллизация расплава и образование конечной микроструктуры агломерата
- 2.2.5 Удаление вредных примесей из шихты при спекании руд и концентратов
- 2.2.6 Качество агломерата
- 2.3 Производство железорудных окатышей
- 2.3.1 Получение сырых окатышей
- 2.3.2 Высокотемпературное упрочнение окатышей
- 2.3.3 Получение окатышей безобжиговым путем
- 2.3.4 Металлургические свойства окатышей
- 2.3.5 Сравнение металлургических свойств агломерата и окатышей
- 2.3.6 Производство металлизованных окатышей
- 2.4 Процессы восстановления в доменной печи
- 3 Образование чугуна и его свойства
- 3.1 Интенсификация доменной плавки
- 3.1.1 Нагрев дутья
- 3.1.2 Обогащение дутья кислородом
- 3.1.3 Водяной пар в дутье
- 3.1.4 Вдувание углеродсодержащих веществ в доменную печь
- 3.2 Профиль доменной печи
- 3.2.1 Общее понятие о профиле
- 3.2.2 Основные размеры профиля и его составные части
- 3.1. Производство стали в конвертерах.
- 3.1.1 Бессемеровский процесс.
- 3.1.2 Томасовский процесс.
- 3.1.3 Кислородно-конвертерный процесс.
- 3.3 Производство стали в мартеновских печах.
- 3.4 Производство стали в электрических печах.
- 3.5 Новые методы производства и обработки стали.
- 4 Ферросплавы
- 4.1 Введение
- 4.2 Сырые материалы
- 4.2.1 Требования к рудам и их выбор
- 4.2.2 Восстановители
- 4.2.3 Железосодержащие материалы
- 4.2.4 Флюсы
- 4.3 Основные элементы конструкции рвп
- 5 Технический (металлургический) кремний
- 5.1 Особенности процесса карботермического восстановления кремния в горне электропечи
- 5.1.1 Общие положения
- 5.1.2. Влияние температуры предварительного нагрева шихты на химизм карботермического восстановления кремнезема
- 5.1.3. Схема технологических зон горна электропечи
- 5.1.4 Влияние примесей шихты на состав технического кремния
- 5.2 Ферросилиций
- 5.2.1 Физико-химические основы получения ферросилиция.
- 5.2.2 Технология производства ферросилиция.
- 6 Сплавы марганца
- 6.1 Применение и состав сплавов марганца
- 6.2 Марганцевые руды и их подготовка к плавке
- 6.3 Производство сплавов марганца
- 6.3.1 Высокоуглеродистый ферромарганец.
- 6.3.2 Силикомарганец
- 6.3.3 Низко- и среднеуглеродистый ферромарганец.
- 6.3.4 Металлический марганец.
- 7 Общие сведения о рудах и концентратах олова
- 7.1 Требования, предъявляемые к рудам и концентратам
- 7.2 Минералы олова
- 7.3 Промышленные типы месторождений олова
- 7.4 Типы оловянных концентратов, поступающих в металлургический передел
- 7.5 Методы обогащения оловянных руд
- 7.6 Влияние типа и вещественного состава руд на их обогатимость
- 7.7 Обогащение россыпей и коренных руд олова
- 7.7.1 Обогащение оловосодержащих россыпей
- 7.7.2 Обогащение оловянных руд коренных месторождений
- 7.8 Доводка оловянных концентратов
- 7.9 Основы современной металлургии олова
- 7.10 Основы теории оловянной восстановительной плавки
- 7.10.1 Восстановление окиси олова и сопутствующих металлов в условиях оловянной плавки
- 7.10.2 Кинетика восстановления окислов металлов и скорость плавки
- 7.10.3 Шлаки оловянной восстановительной плавки
- 7.10.4 Плавка в электрических печах
- 7.10.5 Отечественная практика электроплавки оловянных концентратов
- 7.11 Схема рафинирования олова пирометаллургическим способом
- 8 Производство свинца
- 8.1 Введение
- 8.2 Руды и концентраты
- 8.3 Способы получения свинца
- 8.4 Шихта
- 8.4.1 Состав шихты
- 8.4.2 Приготовление шихты
- 8.4.3 Агломерирующий обжиг свинцовых концентратов
- 8.5 Теория шахтной восстановительной плавки
- 8.5.1 Общие сведения
- 8.5.2 Теоретические основы восстановления окислов металлов
- 8.5.3 Восстановительная способность печи и способы ее регулирования
- 8.5.4 Шлак свинцовой плавки
- 8.5.5 Штейн и шпейза
- 8.5.6 Шахтная восстановительная плавка
- 8.5.7 Топливо
- 8.5.8 Дутье
- 8.6 Реакционная плавка свинца
- 8.6.1 Теоретическая сущность процесса
- 8.6.2 Реакционная плавка в короткобарабанной печи
- 8.7 Электроплавка свинца
- 8.7.1 Реакционная электроплавка свинца
- 8.7.2 Восстановительная электроплавка свинца
- 9.1 Общие сведения и методы получения
- 9.2 Технологические свойства
- 9.3 Области применения
- 9.4 Характеристика рудного цинкового сырья
- 9.5 Основные способы извлечения цинка из сырья
- 9.6 Обжиг цинковых сульфидных концентратов
- 9.6.1 Цели и типы обжига
- 9.6.2 Химизм процессов обжига
- 9.6.3 Обжиг цинковых концентратов для выщелачивания
- 9.7 Химизм кислотно-основных взаимодействий при выщелачивании
- 9.8 У глетермическое восстановление цинка
- 9.8.1 Цели и типы восстановления
- 9.8.2 Химизм восстановления окисленных цинковых материалов
- 9.9 Вельцевание цинковых кеков, цинковистых шлаков и других материалов
- 9.10 Дистилляция цинка из агломерата
- 10 Производство меди и никеля
- 10.1 Сырье для производства меди и никеля. Вспомогательные материалы
- 10.1.1 Классификация рудного сырья
- 10.1.2 Медные руды
- 10.1.3 Никелевые руды
- 10.2 Электроплавка окисленных никелевых руд.
- 10.3 Электроплавка сульфидных медно-никелевых руд и концентратов
- 10.4 Конвертирование никелевых и медно-никелевых штейнов
- 10.4.1 Термодинамика основных реакций процесса
- 10.4.2 Конвертирование никелевых и медно-никелевых штейнов
- 10.5 Переработка медно-никелевого файнштейна
- 10.5.1 Разделение медно-никелевого файнштепна флотацией
- 10.5.2 Обжиг никелевого файнштейна и концентрата. Восстановительная электроплавка закиси никеля.
- 10.6 Восстановительная электроплавка закиси никеля
- 10.7 Способы получения меди из рудного сырья
- 11 Способы получения алюминия
- 11.1 Основы электролиза криолитоглиноземиых расплавов
- 11.2 Сырье и основные материалы
- 11.2.1 Основные минералы и руды алюминия
- 11.2.2 Фториды
- 11.2.3 Огнеупорные и теплоизоляционные материалы
- 11.2.4 Проводниковые материалы
- 11.3 Корректировка состава электролита
- 11.4 Выливка металла
- 11.5 Транспортно-технологическая схема цеха электролиза
- 11.6 Способы очистки отходящих газов